Hostname: page-component-6b989bf9dc-pmhlf Total loading time: 0 Render date: 2024-04-12T21:27:56.521Z Has data issue: false hasContentIssue false

Approximations to wave scattering by an ice sheet of variable thickness over undulating bed topography

Published online by Cambridge University Press:  07 June 2004

Department of Mathematics, University of Reading, P. O. Box 220, Whiteknights, Reading RG6 6AX, UK
School of Mathematics, University of Bristol, Bristol BS8 1TW, UK


An investigation is carried out into the effect on wave propagation of an ice sheet of varying thickness floating on water of varying depth, in three dimensions. By deriving a variational principle equivalent to the governing equations of linear theory and invoking the mild-slope approximation in respect of the ice thickness and water depth variations, a simplified form of the problem is obtained from which the vertical coordinate is absent. Two situations are considered: the scattering of flexural–gravity waves by variations in the thickness of an infinite ice sheet and by depth variations; and the scattering of free-surface gravity waves by an ice sheet of finite extent and varying thickness, again incorporating arbitrary topography. Numerical methods are devised for the two-dimensional versions of these problems and a selection of results is presented. The variational approach that is developed can be used to implement more sophisticated approximations and is capable of producing the solution of full linear problems by taking a large enough basis in the Rayleigh–Ritz method. It is also applicable to other situations that involve wave scattering by a floating elastic sheet.

© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)