Published online by Cambridge University Press: 20 April 2006
The steady compressible flow of an ideal gas in a rotating annulus with thermally conducting walls is considered for small Rossby number ε and Ekman number E and moderate rotational Mach numbers M. Attention is focused on nonlinear effects which show up when σ and εM2 are not small (σ = ε/HE½, H is the dimensionless height of the container). These effects are not properly predicted by the classical linear perturbation analysis, and are treated here by quasi-linear extensions.
The extra work required by these extensions is only the numerical solution of one ordinary differential equation for the pressure.
Numerical solutions of the full Navier–Stokes equations in the nonlinear range are presented, and the validity of the present approach is confirmed.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.