Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-54vk6 Total loading time: 0.256 Render date: 2022-08-17T23:58:07.098Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Bubble and conical forms of vortex breakdown in swirling jets

Published online by Cambridge University Press:  24 June 2019

Pradeep Moise*
Affiliation:
Department of Aerospace Engineering, Indian Institute of Science, Bengaluru 560012, India
Joseph Mathew
Affiliation:
Department of Aerospace Engineering, Indian Institute of Science, Bengaluru 560012, India
*
Email address for correspondence: pradeep890@gmail.com

Abstract

Experimental investigations of laminar swirling jets had revealed a new form of vortex breakdown, named conical vortex breakdown, in addition to the commonly observed bubble form. The present study explores these breakdown states that develop for the Maxworthy profile (a model of swirling jets) at inflow, from streamwise-invariant initial conditions, with direct numerical simulations. For a constant Reynolds number based on jet radius and a centreline velocity of 200, various flow states were observed as the inflow profile’s swirl parameter $S$ (scaled centreline radial derivative of azimuthal velocity) was varied up to 2. At low swirl ($S=1$) a helical mode of azimuthal wavenumber $m=-2$ (co-winding, counter-rotating mode) was observed. A ‘swelling’ appeared at $S=1.38$, and a steady bubble breakdown at $S=1.4$. On further increase to $S=1.5$, a helical, self-excited global mode ($m=+1$, counter-winding and co-rotating) was observed, originating in the bubble’s wake but with little effect on the bubble itself – a bubble vortex breakdown with a spiral tail. Local and global stability analyses revealed this to arise from a linear instability mechanism, distinct from that for the spiral breakdown which has been studied using Grabowski profile (a model of wing-tip vortices). At still higher swirl ($S=1.55$), a pulsating type of bubble breakdown occurred, followed by conical breakdown at 1.6. The latter consists of a large toroidal vortex confined by a radially expanding conical sheet, and a weaker vortex core downstream. For the highest swirls, the sheet was no longer conical, but curved away from the axis as a wide-open breakdown. The applicability of two classical inviscid theories for vortex breakdown – transition to a conjugate state, and the dominance of negative azimuthal vorticity – was assessed for the conical form. As required by the former, the flow transitioned from a supercritical to subcritical state in the vicinity of the stagnation point. The deviations from the predictions of the latter model were considerable.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Åkervik, E., Brandt, L., Henningson, D. S., Hœpffner, J., Marxen, O. & Schlatter, P. 2006 Steady solutions of the Navier–Stokes equations by selective frequency damping. Phys. Fluids 18 (6), 068102.CrossRefGoogle Scholar
Althaus, W., Brücker, C. & Weimer, M. 1995 Breakdown of slender vortices. In Fluid Vortices (ed. Green, S. I.), pp. 373426. Springer Netherlands.CrossRefGoogle Scholar
Althaus, W. & Weimer, M. 1998 Review of the Aachen work on vortex breakdown. In Proc., IUTAM Symposium on Dynamics of Slender Vortices (ed. Krause, E. & Gersten, K.), pp. 331344. Kluwer Academic Publishers.CrossRefGoogle Scholar
Balakrishna, N., Mathew, J. & Samanta, A.2019 BiGlobal stability of vortex ring. (under preparation).Google Scholar
Bayliss, A. & Turkel, E. 1992 Mappings and accuracy for Chebyshev pseudo-spectral approximations. J. Comput. Phys. 101 (2), 349359.CrossRefGoogle Scholar
Benjamin, T. B. 1962 Theory of the vortex breakdown phenomenon. J. Fluid Mech. 14 (4), 593629.CrossRefGoogle Scholar
Benjamin, T. B. 1967 Some developments in the theory of vortex breakdown. J. Fluid Mech. 28 (1), 6584.CrossRefGoogle Scholar
Billant, P., Chomaz, J.-M. & Huerre, P. 1998 Experimental study of vortex breakdown in swirling jets. J. Fluid Mech. 376, 183219.CrossRefGoogle Scholar
Blackburn, H. M. & Lopez, J. M. 2000 Symmetry breaking of the flow in a cylinder driven by a rotating end wall. Phys. Fluids 12 (11), 26982701.CrossRefGoogle Scholar
Brown, G. L. & Lopez, J. M. 1990 Axisymmetric vortex breakdown. Part 2. Physical mechanisms. J. Fluid Mech. 221, 553576.CrossRefGoogle Scholar
Brücker, C. 1993 Study of vortex breakdown by particle tracking velocimetry (PTV). Part 2. Spiral-type vortex breakdown. Exp. Fluids 14 (1–2), 133139.CrossRefGoogle Scholar
Brücker, C. & Althaus, W. 1992 Study of vortex breakdown by particle tracking velocimetry (PTV). Exp. Fluids 13 (5), 339349.CrossRefGoogle Scholar
Chigier, N. A. & Chervinsky, A. 1967 Experimental investigation of swirling vortex motion in jets. Trans. ASME J. Appl. Mech. 34 (2), 443451.CrossRefGoogle Scholar
Chomaz, J.-M., Huerre, P. & Redekopp, L. G. 1991 A frequency selection criterion in spatially developing flows. Stud. Appl. Maths 84 (2), 119144.CrossRefGoogle Scholar
Escudier, M. 1984 Observations of the flow produced in a cylindrical container by a rotating endwall. Exp. Fluids 2 (4), 189196.CrossRefGoogle Scholar
Escudier, M. 1987 Confined vortices in flow machinery. Annu. Rev. Fluid Mech. 19, 2752.CrossRefGoogle Scholar
Escudier, M. 1988 Vortex breakdown: observations and explanations. Prog. Aerosp. Sci. 25 (2), 189229.CrossRefGoogle Scholar
Faler, J. H. & Leibovich, S. 1977 Disrupted states of vortex flow and vortex breakdown. Phys. Fluids 20 (9), 13851400.CrossRefGoogle Scholar
Faler, J. H. & Leibovich, S. 1978 An experimental map of the internal structure of a vortex breakdown. J. Fluid Mech. 86, 313335.CrossRefGoogle Scholar
Fernández de la Mora, J. 2007 The fluid dynamics of Taylor cones. Annu. Rev. Fluid Mech. 39 (1), 217243.CrossRefGoogle Scholar
Fitzgerald, A. J., Hourigan, K. & Thompson, M. C. 2004 Towards a universal criterion for predicting vortex breakdown in swirling jets. In Proceedings of the Fifteenth Australasian Fluid Mechanics Conference (ed. Behnia, M., Lin, W. & McBain, G. D.). The University of Sydney.Google Scholar
Fraenkel, L. E. 1967 On Benjamin’s theory of conjugate vortex flows. J. Fluid Mech. 28 (1), 8596.CrossRefGoogle Scholar
Gallaire, F. & Chomaz, J.-M. 2003 Mode selection in swirling jet experiments: a linear stability analysis. J. Fluid Mech. 494, 223253.CrossRefGoogle Scholar
Gallaire, F., Rott, S. & Chomaz, J.-M. 2004 Experimental study of a free and forced swirling jet. Phys. Fluids 16 (8), 29072917.CrossRefGoogle Scholar
Gallaire, F., Ruith, M., Meiburg, E., Chomaz, J.-M. & Huerre, P. 2006 Spiral vortex breakdown as a global mode. J. Fluid Mech. 549, 7180.CrossRefGoogle Scholar
Gore, R. W. & Ranz, W. E. 1964 Backflows in rotating fluids moving axially through expanding cross sections. AIChE J. 10 (1), 8388.CrossRefGoogle Scholar
Grabowski, W. J. & Berger, S. A. 1976 Solutions of the Navier–Stokes equations for vortex breakdown. J. Fluid Mech. 75 (3), 525544.CrossRefGoogle Scholar
Hall, M. G. 1972 Vortex breakdown. Annu. Rev. Fluid Mech. 4 (1), 195218.CrossRefGoogle Scholar
Healey, J. J. 2008 Inviscid axisymmetric absolute instability of swirling jets. J. Fluid Mech. 613, 133.CrossRefGoogle Scholar
Heaton, C. J., Nichols, J. W. & Schmid, P. J. 2009 Global linear stability of the non-parallel Batchelor vortex. J. Fluid Mech. 629, 139160.CrossRefGoogle Scholar
Hernandez, V., Roman, J. E. & Vidal, V. 2005 SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. 31 (3), 351362.CrossRefGoogle Scholar
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22 (1), 473537.CrossRefGoogle Scholar
Kopecky, R. M. & Torrance, K. E. 1973 Initiation and structure of axisymmetric eddies in a rotating stream. Comput. Fluids 1 (3), 289300.CrossRefGoogle Scholar
Laizet, S. & Lamballais, E. 2009 High-order compact schemes for incompressible flows: a simple and efficient method with quasi-spectral accuracy. J. Comput. Phys. 228 (16), 59896015.CrossRefGoogle Scholar
Laizet, S. & Li, N. 2011 Incompact3d, a powerful tool to tackle turbulence problems with up to O (105) computational cores. Intl J. Numer. Meth. Fluids 67, 17351757.CrossRefGoogle Scholar
Lamballais, E., Fortuné, V. & Laizet, S. 2011 Straightforward high-order numerical dissipation via the viscous term for direct and large eddy simulation. J. Comput. Phys. 230 (9), 32703275.CrossRefGoogle Scholar
Leibovich, S. 1978 The structure of vortex breakdown. Annu. Rev. Fluid Mech. 10, 221246.CrossRefGoogle Scholar
Leibovich, S. 1984 Vortex stability and breakdown – Survey and extension. AIAA J. 22 (9), 11921206.CrossRefGoogle Scholar
Liang, H. & Maxworthy, T. 2005 An experimental investigation of swirling jets. J. Fluid Mech. 525, 115159.CrossRefGoogle Scholar
Lilley, D. G. 1977 Swirl flows in combustion: a review. AIAA J. 15 (8), 10631078.CrossRefGoogle Scholar
Loiseleux, T. & Chomaz, J.-M. 2003 Breaking of rotational symmetry in a swirling jet experiment. Phys. Fluids 15 (2), 511523.CrossRefGoogle Scholar
Manoharan, K., Hansford, S., O’ Connor, J. & Hemchandra, S. 2015 Instability mechanism in a swirl flow combustor: precession of vortex core and influence of density gradient. In ASME. Turbo Expo: Power for Land, Sea, and Air, vol. 4A; paper number: GT2015-42985, p. V04AT04A073. ASME.Google Scholar
Meliga, P., Gallaire, F. & Chomaz, J.-M. 2012 A weakly nonlinear mechanism for mode selection in swirling jets. J. Fluid Mech. 699, 216262.CrossRefGoogle Scholar
Mitchell, A. M. & Delery, J. 2001 Research into vortex breakdown control. Prog. Aerosp. Sci. 37 (4), 385418.CrossRefGoogle Scholar
Mourtazin, D. & Cohen, J. 2007 The effect of buoyancy on vortex breakdown in a swirling jet. J. Fluid Mech. 571, 177189.CrossRefGoogle Scholar
Oberleithner, K., Paschereit, C. O., Seele, R. & Wygnanski, I. 2012 Formation of turbulent vortex breakdown: intermittency, criticality, and global instability. AIAA J. 50 (7), 14371452.CrossRefGoogle Scholar
Oberleithner, K., Sieber, M., Nayeri, C. N., Paschereit, C. O., Petz, C., Hege, H. C., Noack, B. R. & Wygnanski, I. 2011 Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J. Fluid Mech. 679, 383414.CrossRefGoogle Scholar
Ogus, G., Baelmans, M. & Vanierschot, M. 2016 On the flow structures and hysteresis of laminar swirling jets. Phys. Fluids 28 (12), 123604.CrossRefGoogle Scholar
Pasche, S., Avellan, F. & Gallaire, F. 2018 Onset of chaos in helical vortex breakdown at low reynolds number. Phys. Rev. Fluids 3, 064701.CrossRefGoogle Scholar
Pier, B. & Huerre, P. 2001 Nonlinear self-sustained structures and fronts in spatially developing wake flows. J. Fluid Mech. 435, 145174.CrossRefGoogle Scholar
Pradeep, M.2019 Bubble and conical forms of vortex breakdown in swirling jets. PhD thesis, Indian Institute of Science, unpublished.Google Scholar
Qadri, U., Mistry, D. & Juniper, M. 2013 Structural sensitivity of spiral vortex breakdown. J. Fluid Mech. 720, 558581.CrossRefGoogle Scholar
Rotunno, R. 2013 The fluid dynamics of tornadoes. Annu. Rev. Fluid Mech. 45 (1), 5984.CrossRefGoogle Scholar
Ruith, M. R., Chen, P. & Meiburg, E. 2004 Development of boundary conditions for direct numerical simulations of three-dimensional vortex breakdown phenomena in semi-infinite domains. Comput. Fluids 33 (9), 12251250.CrossRefGoogle Scholar
Ruith, M. R., Chen, P., Meiburg, E. & Maxworthy, T. 2003 Three-dimensional vortex breakdown in swirling jets and wakes: direct numerical simulation. J. Fluid Mech. 486, 331378.CrossRefGoogle Scholar
Santhosh, R. & Basu, S. 2015 Acoustic response of vortex breakdown modes in a coaxial isothermal unconfined swirling jet. Phys. Fluids 27 (3), 043601.CrossRefGoogle Scholar
Sarpkaya, T. 1971 On stationary and travelling vortex breakdowns. J. Fluid Mech. 45 (3), 545559.CrossRefGoogle Scholar
Snyder, D. O. & Spall, R. E. 2000 Numerical simulation of bubble-type vortex breakdown within a tube-and-vane apparatus. Phys. Fluids 12 (3), 603608.CrossRefGoogle Scholar
Squire, H. B.1960 Analysis of the ‘vortex breakdown’ phenomenon, Part 1. Tech. Rep. Imperial College of Science and Technology Aeronautics Department Report No. 102.Google Scholar
Stevens, J. L., Lopez, J. M. & Cantwell, B. J. 1999 Oscillatory flow states in an enclosed cylinder with a rotating endwall. J. Fluid Mech. 389, 101118.CrossRefGoogle Scholar
Syred, N. & Beer, J. M. 1974 Combustion in swirling flows: a review. Combust. Flame 23 (2), 143201.CrossRefGoogle Scholar
Wang, S. & Rusak, Z. 1997 The dynamics of a swirling flow in a pipe and transition to axisymmetric vortex breakdown. J. Fluid Mech. 340, 177223.CrossRefGoogle Scholar

Moise and Mathew supplementary movie 1

Axial velocity contours on z = 0 plane at different times for the pulsating BVB observed at S = 1.56. The low frequency modulations associated with the unsteady flow can be observed from the figure, which is a characteristic of the pulsating type of BVB.

Download Moise and Mathew supplementary movie 1(Video)
Video 4 MB

Moise and Mathew supplementary movie 2

Temporal evolution of three-dimensional streamlines based on instantaneous velocity fields is shown for pulsating BVB observed at S = 1.56. The intermittent formation of a closed set of streamlines that delineate a toroidal structure are correlated with the pulsating temporal behaviour characteristic of this flow. It is noted that the streamlines originate from equispaced points along the line segment y = -0.5 to 0.5 for x = 3.5 and z = 0. The toroidal structure observed is the intermittent ‘second cell’ while the other permanent toroidal structure associated with the bubble is not highlighted here for clarity, but can be seen in figure 8.

Download Moise and Mathew supplementary movie 2(Video)
Video 10 MB

Moise and Mathew supplementary movie 3

Temporal evolution for the case of S = 1.6 shown using axial velocity contours on z = 0 plane at different times. Past initial transients, a long-time state of CVB can be observed starting from approximately t = 3000. The dynamic features and slow temporal changes in the conical sheet’s structure can be observed.

Download Moise and Mathew supplementary movie 3(Video)
Video 9 MB

Moise and Mathew supplementary movie 4

Cross-sectional features of CVB at S = 1.6 are highlighted using axial velocity contours plane at different times. The flow remains axisymmetric in the upstream regions, but non-axisymmetric features can be observed downstream. The conical sheet is seen to slowly rotate with time.

Download Moise and Mathew supplementary movie 4(Video)
Video 1 MB
12
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Bubble and conical forms of vortex breakdown in swirling jets
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Bubble and conical forms of vortex breakdown in swirling jets
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Bubble and conical forms of vortex breakdown in swirling jets
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *