Hostname: page-component-7d684dbfc8-rcw2t Total loading time: 0 Render date: 2023-09-28T11:55:24.208Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Coalescing axisymmetric turbulent plumes

Published online by Cambridge University Press:  01 March 2004

Department of Civil and Environmental Engineering, Imperial College of Science, Technology and Medicine, Imperial College Road, London, SW7 2BU, UK
Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0411, USA


The coalescence of two co-flowing axisymmetric turbulent plumes and the resulting single plume flow is modelled and compared to experiments. The point of coalescence is defined as the location at which only a single peak appears in the horizontal buoyancy profile, and a prediction is made for its height. The model takes into account the drawing together of the two plumes due to their respective entrainment fields. Experiments showed that the model tends to overestimate the coalescence height, though this discrepancy may be partly explained by the sensitivity of the prediction to the entrainment coefficient. A model is then developed to describe the resulting single plume and predict its virtual origin. This prediction and subsequent predictions of flow rate above the merge height compare very well with experimental results.

© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)