Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T09:05:54.679Z Has data issue: false hasContentIssue false

Collapse of a cohesive granular column

Published online by Cambridge University Press:  22 March 2023

A. Gans
Affiliation:
CNRS, IUSTI, Aix Marseille Université, Marseille, France
A. Abramian
Affiliation:
CNRS, Institut Jean le Rond d'Alembert, Sorbonne Université, Paris, France
P.-Y. Lagrée
Affiliation:
CNRS, Institut Jean le Rond d'Alembert, Sorbonne Université, Paris, France
M. Gong
Affiliation:
Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106-5070, USA
A. Sauret
Affiliation:
Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106-5070, USA
O. Pouliquen
Affiliation:
CNRS, IUSTI, Aix Marseille Université, Marseille, France
M. Nicolas*
Affiliation:
CNRS, IUSTI, Aix Marseille Université, Marseille, France
*
Email address for correspondence: maxime.nicolas@univ-amu.fr

Abstract

The collapse of a quasi-two-dimensional column of cohesive granular media is investigated experimentally and numerically in the framework of a continuum model. The configuration is an initial parallelepiped-shaped granular pile, which is suddenly released by opening a retaining door. The experiments rely on a model material developed by Gans et al. (Phys. Rev. E, vol. 101, 2020, 032904) made of silica particles coated with polyborosiloxane, for which the adhesive interparticle force can be tuned by controlling the thickness of the coating. Numerically, the collapse is simulated using a simple cohesive rheological model implemented in a two-dimensional Navier–Stokes solver. We investigate the role of cohesion on the stability of the column, the mode of failure, the flow dynamics and the geometry of the final deposit. Our results show that the continuum model captures the main features observed experimentally.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramian, A., Lagrée, P.-Y. & Staron, L. 2021 How cohesion controls the roughness of a granular deposit. Soft Matt. 17 (47), 1072310729.CrossRefGoogle ScholarPubMed
Abramian, A., Staron, L. & Lagrée, P.-Y. 2020 The slumping of a cohesive granular column: continuum and discrete modeling. J. Rheol. 64, 12271235.CrossRefGoogle Scholar
Artoni, R., Santomaso, A.C., Gabrieli, F., Tono, D. & Cola, S. 2013 Collapse of quasi- two-dimensional wet granular columns. Phys. Rev. E 87 (3), 032205.CrossRefGoogle Scholar
Badetti, M., Fall, A., Hautemayou, D., Chevoir, F., Aimedieu, P., Rodts, S. & Roux, J.-N. 2018 Rheology and microstructure of unsaturated wet granular materials: experiments and simulations. J. Rheol. 62 (5), 11751186.CrossRefGoogle Scholar
Balmforth, N.J. & Kerswell, R.R. 2005 Granular collapse in two dimensions. J. Fluid Mech. 538, 399428.CrossRefGoogle Scholar
Barker, T., Schaeffer, D.G., Bohórquez, P. & Gray, J.M.N.T. 2015 Well-posed and ill-posed behaviour of the-rheology for granular flow. J. Fluid Mech. 779, 794818.CrossRefGoogle Scholar
Bocquet, L., Charlaix, E., Ciliberto, S. & Crassous, J. 1998 Moisture-induced ageing in granular media and the kinetics of capillary condensation. Nature 87, 735737.CrossRefGoogle Scholar
Castellanos, A. 2005 The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders. Adv. Phys. 4, 263376.CrossRefGoogle Scholar
Chamberlain, J.A., Sader, J.E., Landman, K.A. & White, L.R. 2001 Incipient plane-strain failure of a rectangular block under gravity. Intl J. Mech. Sci. 43 (3), 793815.CrossRefGoogle Scholar
Chen, J., Yin, J.-H. & Lee, C.F. 2003 Upper bound limit analysis of slope stability using rigid finite elements and nonlinear programming. Can. Geotech. J. 40, 742752.CrossRefGoogle Scholar
Duncan, J.M., Wright, S.G. & Brandon, T.L. 2014 Soil Strength and Slope Stability, 2nd edn. Wiley.Google Scholar
Foster, K.D., Bronlund, J.E. & Paterson, T. 2006 Glass transition related cohesion of amorphous sugar powders. J. Food Engng 77 (4), 9971006.CrossRefGoogle Scholar
Fredlund, D.G. & Krahn, J. 1977 Comparison of slope stability methods of analysis. Can. Geotech. J. 14, 429439.CrossRefGoogle Scholar
Gans, A., Pouliquen, O. & Nicolas, M. 2020 Cohesion-controlled granular material. Phys. Rev. E 101, 032904.CrossRefGoogle ScholarPubMed
Halsey, T.C. & Levine, A.J. 1998 How sandcastles fall. Phys. Rev. Lett. 80 (14), 3141.CrossRefGoogle Scholar
Kamiya, H., Kimura, A., Tsukada, M. & Naito, M. 2002 Analysis of the high-temperature cohesion behavior of ash particles using pure silica powders coated with alkali metals. Energy Fuels 16 (2), 457461.CrossRefGoogle Scholar
Kermani, E., Qiu, T. & Li, T. 2015 Simulation of collapse of granular columns using the discrete element method. Intl J. Geomech. 15, 04015004.CrossRefGoogle Scholar
Konopka, L. & Kosek, J. 2017 Discrete element modeling of electrostatic charging of polyethylene powder particles. J. Electrostat. 87, 150157.CrossRefGoogle Scholar
Lacaze, L., Phillips, J.C. & Kerswell, R.R. 2008 Planar collapse of a granular column: experiments and discrete element simulations. Phys. Fluids 20, 063302.CrossRefGoogle Scholar
Lagrée, P.Y., Staron, L. & Popinet, S. 2011 The granular column collapse as a continuum: validity of a two-dimensional Navier–Stokes model with a μ(I)-rheology. J. Fluid Mech. 686, 378408.CrossRefGoogle Scholar
Lajeunesse, E., Monnier, J.B. & Homsy, G.M. 2005 Granular slumping on a horizontal surface. Phys. Fluids 17, 103302.CrossRefGoogle Scholar
Langlois, V.J., Quiquerez, A. & Allemand, P. 2015 Collapse of a two-dimensional brittle granular column: implications for understanding dynamic rock fragmentation in a landslide. J. Geophys. Res. 120, 18661880.CrossRefGoogle Scholar
Li, P., Wang, D., Wu, Y. & Niu, Z. 2021 Experimental study on the collapse of wet granular column in the pendular state. Powder Tech. 393, 357367.CrossRefGoogle Scholar
Liu, Y., Balmforth, N.J., Hormozi, S. & Hewitt, D.R. 2016 Two-dimensional viscoplastic dambreaks. J. Non-Newtonian Fluid Mech. 238, 6579.CrossRefGoogle Scholar
Lube, G., Huppert, H.E., Sparks, R.S.J. & Freundt, A. 2005 Collapses of two-dimensional granular columns. Phys. Rev. E 72, 041301.CrossRefGoogle ScholarPubMed
Macaulay, M. & Rognon, P. 2021 Viscosity of cohesive granular flows. Soft Matt. 17 (1), 165173.CrossRefGoogle ScholarPubMed
Mandal, S., Nicolas, M. & Pouliquen, O. 2021 Rheology of cohesive granular media: shear banding, hysteresis, and nonlocal effects. Phys. Rev. X 11 (2), 021017.Google Scholar
Mériaux, C. & Triantafillou, T. 2008 Scaling the final deposits of dry cohesive granular columns after collapse and quasi-static fall. Phys. Fluids 20, 033301.CrossRefGoogle Scholar
Mitarai, N. & Nori, F. 2006 Wet granular materials. Adv. Phys. 55, 145.CrossRefGoogle Scholar
Restagno, F., Bocquet, L. & Charlaix, E. 2004 Where does a cohesive granular heap break? Eur. Phys. J. E 14, 177183.CrossRefGoogle ScholarPubMed
Sharma, R.S., Gong, M., Azadi, S., Gans, A., Gondret, P. & Sauret, A. 2022 Erosion of cohesive grains by an impinging turbulent jet. Phys. Rev. Fluids 7, 074303.CrossRefGoogle Scholar
Staron, L. & Hinch, E.J. 2005 Study of the collapse of granular columns using two-dimensional discrete-grain simulation. J. Fluid Mech. 545, 127.CrossRefGoogle Scholar