Skip to main content Accessibility help
×
Home
Hostname: page-component-5c569c448b-9hjnw Total loading time: 0.3 Render date: 2022-07-03T04:00:21.624Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Complete Hamiltonian formalism for inertial waves in rotating fluids

Published online by Cambridge University Press:  13 October 2017

A. A. Gelash*
Affiliation:
Novosibirsk State University, Novosibirsk, 630090, Russia Institute of Thermophysics, SB RAS, Novosibirsk, 630090, Russia
V. S. L’vov
Affiliation:
Department of Chemical Physics, The Weizmann Institute of Science, Rehovot, 76100, Israel
V. E. Zakharov
Affiliation:
Novosibirsk State University, Novosibirsk, 630090, Russia Department of Mathematics, University of Arizona, AZ 857201 Tucson, USA Lebedev Physical Institute, RAS, Moscow, 119991, Russia
*
Email address for correspondence: agelash@gmail.com

Abstract

A complete Hamiltonian formalism is suggested for inertial waves in rotating incompressible fluids. Resonance three-wave interaction processes – decay instability and confluence of two waves – are shown to play a key role in the weakly nonlinear dynamics and statistics of inertial waves in the rapid rotation case. Future applications of the Hamiltonian approach to inertial wave theory are investigated and discussed.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bayly, B. J. 1986 Three-dimensional instability of elliptical flow. Phys. Rev. Lett. 57 (17), 2160.CrossRefGoogle ScholarPubMed
Bellet, F., Godeferd, F. S., Scott, J. F. & Cambon, C. 2006 Wave turbulence in rapidly rotating flows. J. Fluid Mech. 562, 83121.CrossRefGoogle Scholar
Bordes, G., Moisy, F., Dauxois, T. & Cortet, P. P. 2012 Experimental evidence of a triadic resonance of plane inertial waves in a rotating fluid. Phys. Fluids 24 (1), 014105.CrossRefGoogle Scholar
Brouzet, C., Sibgatullin, I. N., Scolan, H., Ermanyuk, E. V. & Dauxois, T. 2016 Internal wave attractors examined using laboratory experiments and 3D numerical simulations. J. Fluid Mech. 793, 109131.CrossRefGoogle Scholar
Cambon, C. & Jacquin, L. 1989 Spectral approach to non-isotropic turbulence subjected to rotation. J. Fluid Mech. 202, 295317.CrossRefGoogle Scholar
Cambon, C., Rubinstein, R. & Godeferd, F. S. 2004 Advances in wave turbulence: rapidly rotating flows. New J. Phys. 6 (1), 73.CrossRefGoogle Scholar
Craik, A. D. D. & Criminale, W. O. 1986 Evolution of wavelike disturbances in shear flows: a class of exact solutions of the Navier–Stokes equations. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 406, pp. 1326. The Royal Society.Google Scholar
Dyachenko, A. I., Korotkevich, A. O. & Zakharov, V. E. 2003 Decay of the monochromatic capillary wave. JETP Lett. 77 (9), 477481.CrossRefGoogle Scholar
Galtier, S. 2003 Weak inertial-wave turbulence theory. Phys. Rev. E 68 (1), 015301.Google ScholarPubMed
Galtier, S. 2014 Theory for helical turbulence under fast rotation. Phys. Rev. E 89 (4), 041001.Google ScholarPubMed
Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.Google Scholar
Korotkevich, A. O., Dyachenko, A. I. & Zakharov, V. E. 2016 Numerical simulation of surface waves instability on a homogeneous grid. Physica D 321, 5166.CrossRefGoogle Scholar
Kuznetsov, E. A. 1972 Turbulence of ion sound in a plasma located in a magnetic field. Sov. Phys. JETP 35, 310.Google Scholar
Kuznetsov, E. A. & Mikhailov, A. V. 1980 On the topological meaning of canonical Clebsch variables. Phys. Lett. A 77 (1), 3738.CrossRefGoogle Scholar
Lamb, H. 1945 Hydrodynamics. Dover.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics. Pergamon.Google Scholar
Le Gal, P. 2013 Waves and instabilities in rotating and stratified flows. In Fluid Dynamics in Physics, Engineering and Environmental Applications, pp. 2540. Springer.CrossRefGoogle Scholar
di Leoni, P. C. & Mininni, P. D. 2016 Quantifying resonant and near-resonant interactions in rotating turbulence. J. Fluid Mech. 809, 821842.CrossRefGoogle Scholar
L’vov, V. S. 1994 Wave Turbulence under Parametric Excitation. Springer.CrossRefGoogle Scholar
Lvov, Y. V., Polzin, K. L. & Tabak, E. G. 2004 Energy spectra of the ocean’s internal wave field: theory and observations. Phys. Rev. Lett. 92 (12), 128501.CrossRefGoogle ScholarPubMed
Lvov, Y. V. & Tabak, E. G. 2001 Hamiltonian formalism and the Garrett–Munk spectrum of internal waves in the ocean. Phys. Rev. Lett. 87 (16), 168501.CrossRefGoogle ScholarPubMed
Maas, L. R. M., Benielli, D., Sommeria, J. & Lam, F. P. A. 1997 Observation of an internal wave attractor in a confined, stably stratified fluid. Nature 388 (6642), 557561.CrossRefGoogle Scholar
Messio, L., Morize, C., Rabaud, M. & Moisy, F. 2008 Experimental observation using particle image velocimetry of inertial waves in a rotating fluid. Exp. Fluids 44 (4), 519528.CrossRefGoogle Scholar
Morrison, P. J. 1998 Hamiltonian description of the ideal fluid. Rev. Mod. Phys. 70 (2), 467.CrossRefGoogle Scholar
Nazarenko, S. 2011 Wave Turbulence. Springer.CrossRefGoogle Scholar
Phillips, O. M. 1966 The Dynamics of the Upper Ocean. Cambridge University Press.Google Scholar
Sagaut, P. & Cambon, C. 2008 Homogeneous Turbulence Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Salmon, R. 1988 Hamiltonian fluid mechanics. Annu. Rev. Fluid Mech. 20 (1), 225256.CrossRefGoogle Scholar
Scolan, H., Ermanyuk, E. & Dauxois, T. 2013 Nonlinear fate of internal wave attractors. Phys. Rev. Lett. 110 (23), 234501.CrossRefGoogle ScholarPubMed
Sen, A., Mininni, P. D., Rosenberg, D. & Pouquet, A. 2012 Anisotropy and nonuniversality in scaling laws of the large-scale energy spectrum in rotating turbulence. Phys. Rev. E 86 (3), 036319.Google ScholarPubMed
Waleffe, F. 1993 Inertial transfers in the helical decomposition. Phys. Fluids A 5 (3), 677685.CrossRefGoogle Scholar
Yakhot, V. & Zakharov, V. 1993 Hidden conservation laws in hydrodynamics; energy and dissipation rate fluctuation spectra in strong turbulence. Physica D 64 (4), 379394.CrossRefGoogle Scholar
Zakharov, V. E. 1971 Hamiltonian formalism for hydrodynamic plasma models. Sov. Phys. JETP 33, 927932.Google Scholar
Zakharov, V. E. & Kuznetsov, E. A. 1997 Hamiltonian formalism for nonlinear waves. Phys. Usp. 40 (11), 10871116.CrossRefGoogle Scholar
Zakharov, V. E., L’vov, V. S. & Falkovich, G. 1992 Kolmogorov Spectra of Turbulence 1. Wave Turbulence. Springer.CrossRefGoogle Scholar
Zakharov, V. E., L’vov, V. S. & Starobinets, S. S. 1971 Stationary nonlinear theory of parametric excitation of waves. Sov. Phys. JETP 32, 656.Google Scholar
5
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Complete Hamiltonian formalism for inertial waves in rotating fluids
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Complete Hamiltonian formalism for inertial waves in rotating fluids
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Complete Hamiltonian formalism for inertial waves in rotating fluids
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *