Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-10-04T11:48:39.218Z Has data issue: false hasContentIssue false

Computational and experimental study of an oil jet in crossflow: coupling population balance model with multifluid large eddy simulation

Published online by Cambridge University Press:  02 December 2021

Cosan Daskiran
Affiliation:
Center for Natural Resources, Civil and Environmental Engineering Department, New Jersey Institute of Technology, Newark, NJ 07102, USA
Fangda Cui
Affiliation:
Center for Natural Resources, Civil and Environmental Engineering Department, New Jersey Institute of Technology, Newark, NJ 07102, USA
Michel C. Boufadel*
Affiliation:
Center for Natural Resources, Civil and Environmental Engineering Department, New Jersey Institute of Technology, Newark, NJ 07102, USA
Ruixue Liu
Affiliation:
Center for Natural Resources, Civil and Environmental Engineering Department, New Jersey Institute of Technology, Newark, NJ 07102, USA
Lin Zhao
Affiliation:
ExxonMobil Upstream Research Company, Houston, TX 77389, USA
Tamay Özgökmen
Affiliation:
Department of Ocean Sciences, University of Miami, Miami, FL 33149, USA
Scott Socolofsky
Affiliation:
Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843, USA
Kenneth Lee
Affiliation:
Department of Fisheries and Oceans, Dartmouth NS B2Y 4A2, Canada
*
Email address for correspondence: boufadel@gmail.com

Abstract

Understanding the size of oil droplets released from a jet in crossflow is crucial for estimating the trajectory of hydrocarbons and the rates of oil biodegradation/dissolution in the water column. We present experimental results of an oil jet with a jet-to-crossflow velocity ratio of 9.3. The oil was released from a vertical pipe 25 mm in diameter with a Reynolds number of 25 000. We measured the size of oil droplets near the top and bottom boundaries of the plume using shadowgraph cameras and we also filmed the whole plume. In parallel, we developed a multifluid large eddy simulation model to simulate the plume and coupled it with our VDROP population balance model to compute the local droplet size. We accounted for the slip velocity of oil droplets in the momentum equation and in the volume fraction equation of oil through the local, mass-weighted average droplet rise velocity. The top and bottom boundaries of the plume were captured well in the simulation. Larger droplets shaped the upper boundary of the plume, and the mean droplet size increased with elevation across the plume, most likely due to the individual rise velocity of droplets. At the same elevation across the plume, the droplet size was smaller at the centre axis as compared with the side boundaries of the plume due to the formation of the counter-rotating vortex pair, which induced upward velocity at the centre axis and downward velocity near the sides of the plume.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Work was completed while the author was a Postdoctoral Researcher at the New Jersey Institute of Technology.

References

REFERENCES

Aiyer, A.K., Yang, D., Chamecki, M. & Meneveau, C. 2019 A population balance model for large eddy simulation of polydisperse droplet evolution. J. Fluid Mech. 878, 700739.CrossRefGoogle Scholar
Azbel, D. 1981 Two Phase Flows in Chemical Engineering. Cambridge University Press.Google Scholar
Bodart, J., Coletti, F., Bermejo-Moreno, I. & Eaton, J. 2013 High-fidelity simulation of a turbulent inclined jet in a crossflow. In Center for Turbulence Research Annual Research Briefs, vol. 19, pp. 263–275.Google Scholar
Boufadel, M.C., Socolofsky, S., Katz, J., Yang, D., Daskiran, C. & Dewar, W. 2020 A review on multiphase underwater jets and plumes: droplets, hydrodynamics, and chemistry. Rev. Geophys. 58 (3), e2020RG000703.CrossRefGoogle Scholar
Brackbill, J.U., Kothe, D.B. & Zemach, C. 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100 (2), 335354.CrossRefGoogle Scholar
Chen, K.S. & Hwang, J.Y. 1991 Experimental study on the mixing of one-and dual-line heated jets with a cold crossflow in a confined channel. AIAA J. 29 (3), 353360.CrossRefGoogle Scholar
Cheung, V. 1991 Mixing of a round buoyant jet in a current. PhD thesis, University of Hong Kong, pp. 1–0.Google Scholar
Cintolesi, C., Petronio, A. & Armenio, V. 2019 Turbulent structures of buoyant jet in cross-flow studied through large-eddy simulation. Environ. Fluid Mech. 19 (2), 401433.CrossRefGoogle Scholar
Clift, R., Grace, J.R. & Weber, M.E. 2005 Bubbles, Drops, and Particles. Courier Corporation.Google Scholar
Cui, F., Boufadel, M.C., Geng, X., Gao, F., Zhao, L., King, T. & Lee, K. 2018 Oil droplets transport under a deep-water plunging breaker: impact of droplet inertia. J. Geophys. Res.: Oceans 123 (12), 90829100.CrossRefGoogle Scholar
Cui, F., Daskiran, C., King, T., Robinson, B., Lee, K., Katz, J. & Boufadel, M.C. 2020 a Modeling oil dispersion under breaking waves. Part I: wave hydrodynamics. Environ. Fluid Mech. 20 (6), 15271551.CrossRefGoogle Scholar
Cui, F., Zhao, L., Daskiran, C., King, T., Lee, K., Katz, J. & Boufadel, M.C 2020 b Modeling oil dispersion under breaking waves. Part II: coupling Lagrangian particle tracking with population balance model. Environ. Fluid Mech. 20 (6), 15531578.CrossRefGoogle Scholar
Daskiran, C., Cui, F., Boufadel, M.C., Socolofsky, S.A., Katz, J., Zhao, L., Özgökmen, T., Robinson, B. & King, T. 2021 a Transport of oil droplets from a jet in crossflow: dispersion coefficients and vortex trapping. Ocean Model. 158, 101736.CrossRefGoogle Scholar
Daskiran, C., Cui, F., Boufadel, M.C., Zhao, L., Socolofsky, S.A., Özgökmen, T., Robinson, B. & King, T. 2020 Hydrodynamics and dilution of an oil jet in crossflow: the role of small-scale motions from laboratory experiment and large eddy simulations. Intl J. Heat Fluid Flow 85, 108634.CrossRefGoogle Scholar
Daskiran, C., Xue, X., Cui, F., Katz, J. & Boufadel, M.C. 2021 b Large eddy simulation and experiment of shear breakup in liquid-liquid jet: formation of ligaments and droplets. Intl J. Heat Fluid Flow 89, 108810.CrossRefGoogle Scholar
Fabregat Tomàs, A., Poje, A.C., Özgökmen, T.M. & Dewar, W.K. 2016 Dynamics of multiphase turbulent plumes with hybrid buoyancy sources in stratified environments. Phys. Fluids 28 (9), 095109.CrossRefGoogle Scholar
Francois, M., Sicilian, J. & Kothe, D.B. 2007 Modeling interfacial surface tension in fluid flow. Oak Ridge National Laboratory, Oak Ridge, TN.Google Scholar
Galeazzo, F.C.C., Donnert, G., Cárdenas, C., Sedlmaier, J., Habisreuther, P., Zarzalis, N., Beck, C. & Krebs, W. 2013 Computational modeling of turbulent mixing in a jet in crossflow. Intl J. Heat Fluid Flow 41, 5565.CrossRefGoogle Scholar
Getsinger, D.R., Gevorkyan, L., Smith, O.I. & Karagozian, A.R. 2014 Structural and stability characteristics of jets in crossflow. J. Fluid Mech. 760, 342367.CrossRefGoogle Scholar
Gevorkyan, L., Shoji, T., Getsinger, D.R., Smith, O.I. & Karagozian, A.R. 2016 Transverse jet mixing characteristics. J. Fluid Mech. 790, 237274.CrossRefGoogle Scholar
Ghosh, S. & Hunt, J.C.R. 1998 Spray jets in a cross-flow. J. Fluid Mech. 365, 109136.CrossRefGoogle Scholar
Grace, J.R., Wairegi, T. & Brophy, J. 1978 Break-up of drops and bubbles in stagnant media. Can. J. Chem. Engng 56 (1), 38.CrossRefGoogle Scholar
Gros, J., Socolofsky, S.A., Dissanayake, A.L., Jun, I., Zhao, L., Boufadel, M.C., Reddy, C.M. & Arey, J.S. 2017 Petroleum dynamics in the sea and influence of subsea dispersant injection during deepwater horizon. Proc. Natl Acad. Sci. USA 114 (38), 1006510070.CrossRefGoogle ScholarPubMed
Hamam, S.E.M. 1987 Diffusion of crude oil in water. J. Environ. Sci. 22 (5), 445456.Google Scholar
Hasslberger, J., Ketterl, S. & Klein, M. 2020 A-priori assessment of interfacial sub-grid scale closures in the two-phase flow LES context. Flow Turbul. Combust. 105 (2), 359375.CrossRefGoogle Scholar
Herrmann, M. 2010 A surface tension sub-grid model for phase interface dynamics. In Proceeding Of Summer Program 2010. Centre for Turbulence Research, Stanford University, USA.Google Scholar
Hirt, C.W. & Nichols, B.D. 1981 Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39 (1), 201225.CrossRefGoogle Scholar
Jirka, G.H. 2004 Integral model for turbulent buoyant jets in unbounded stratified flows. Part I: single round jet. Environ. Fluid Mech. 4 (1), 156.CrossRefGoogle Scholar
Jirka, G.H. & Domeker, R.L. 1991 Hydrodynamic classification of submerged single-port discharges. J. Hydraul. Engng ASCE 117 (9), 10951112.CrossRefGoogle Scholar
Johansen, Ø., Brandvik, P.J. & Farooq, U. 2013 Droplet breakup in subsea oil releases–Part 2: predictions of droplet size distributions with and without injection of chemical dispersants. Mar. Pollut. Bull. 73 (1), 327335.CrossRefGoogle ScholarPubMed
Johansen, Ø., Rye, H., Melbye, A.G., Jensen, H.V., Serigstad, B. & Knutsen, T. 2001 Deep spill JIP-experimental discharges of gas and oil at Helland Hansen-June 2000. SINTEF Rep. 5TF66F01082. SINTEF Applied Chemistry, Trondheim, Norway, pp. 1–159.Google Scholar
Jones, W.P. & Wille, M. 1996 Large-eddy simulation of a plane jet in a cross-flow. Intl J. Heat Fluid Flow 17 (3), 296306.CrossRefGoogle Scholar
Kamotani, Y. & Greber, I. 1972 Experiments on a turbulent jet in a cross flow. AIAA J. 10 (11), 14251429.CrossRefGoogle Scholar
Kruskopf, A. 2017 A 2D axisymmetric mixture multiphase model for bottom stirring in a BOF converter. Metall. Mater. Trans. B 48 (1), 619631.CrossRefGoogle Scholar
Lee, J.H.-W., Chu, V. & Chu, V.H. 2003 Turbulent Jets and Plumes: A Lagrangian Approach, vol. 1. Springer Science & Business Media.CrossRefGoogle Scholar
Leonard, A. 1975 Energy cascade in large-eddy simulations of turbulent fluid flows. In Turbulent Diffusion in Environmental Pollution (ed. F. Frenkiel & R. Munn), Advances in Geophysics, vol. 18, pp. 237–248. Elsevier.CrossRefGoogle Scholar
Liovic, P. & Lakehal, D. 2012 Subgrid-scale modelling of surface tension within interface tracking-based large eddy and interface simulation of 3D interfacial flows. Comput. Fluids 63, 2746.CrossRefGoogle Scholar
Mahesh, K. 2013 The interaction of jets with crossflow. Annu. Rev. Fluid Mech. 45, 379407.CrossRefGoogle Scholar
Manninen, M., Taivassalo, V., Kallio, S. 1996 On the mixture model for multiphase flow. Tech. Rep. VTT Publications 288. Technical Research Centre of Finland.Google Scholar
Margason, R.J. 1993 Fifty years of jet in crosflow research. In Computational and Experimental Assessment of Jets in Cross Flow. AGARD-CP-534, Winchester, UK.Google Scholar
Megerian, S., Davitian, J., Alves, L.S. de B. & Karagozian, A.R. 2007 Transverse-jet shear-layer instabilities. Part 1. Experimental studies. J. Fluid Mech. 593, 93129.CrossRefGoogle Scholar
Milanovic, I., Zaman, K.B.M.Q. & Bencic, T.J. 2012 Unsteady wake vortices in jets in cross-flow. J. Visual. 15 (1), 4555.CrossRefGoogle Scholar
Muppidi, S. & Mahesh, K. 2007 Direct numerical simulation of round turbulent jets in crossflow. J. Fluid Mech. 574, 5984.CrossRefGoogle Scholar
Murphy, D.W., Xue, X., Sampath, K. & Katz, J. 2016 Crude oil jets in crossflow: effects of dispersant concentration on plume behavior. J. Geophys. Res.: Oceans 121 (6), 42644281.CrossRefGoogle Scholar
Naumann, Z. & Schiller, L. 1935 A drag coefficient correlation. Z. Verein. Deutsch. Ing. 77 (318), e323.Google Scholar
Pedel, J., Thornock, J.N., Smith, S.T. & Smith, P.J. 2014 Large eddy simulation of polydisperse particles in turbulent coaxial jets using the direct quadrature method of moments. Intl J. Multiphase Flow 63, 2338.CrossRefGoogle Scholar
Piomelli, U. & Liu, J. 1995 Large-eddy simulation of rotating channel flows using a localized dynamic model. Phys. Fluids 7 (4), 839848.CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Popinet, S. 2018 Numerical models of surface tension. Annu. Rev. Fluid Mech. 50, 4975.CrossRefGoogle Scholar
Pratte, B.D. & Baines, W.D. 1967 Profiles of the round turbulent jet in a cross flow. J. Hydraul. Div. ASCE 93 (6), 5364.CrossRefGoogle Scholar
Quinn, W.R. & Militzer, J. 1988 Experimental and numerical study of a turbulent free square jet. Phys. Fluids 31 (5), 10171025.CrossRefGoogle Scholar
Rasband, W.S. 1997–2016 ImageJ. U.S National Institutes of Health, Bethesda, Maryland, USA. http://imagej.nih.gov/ij/, Bethesda, MD.Google Scholar
Ruiz, A.M., Lacaze, G. & Oefelein, J.C. 2015 Flow topologies and turbulence scales in a jet-in-cross-flow. Phys. Fluids 27 (4), 045101.CrossRefGoogle Scholar
Ryan, K.J., Bodart, J., Folkersma, M., Elkins, C.J. & Eaton, J.K. 2017 Turbulent scalar mixing in a skewed jet in crossflow: experiments and modeling. Flow Turbul. Combust. 98 (3), 781801.CrossRefGoogle Scholar
Saeedipour, M. & Schneiderbauer, S. 2019 A new approach to include surface tension in the subgrid eddy viscosity for the two-phase LES. Intl J. Multiphase Flow 121, 103128.CrossRefGoogle Scholar
Salehi, M.M., Omidvar, P. & Naeimi, F. 2017 Salinity of injection water and its impact on oil recovery absolute permeability, residual oil saturation, interfacial tension and capillary pressure. Egypt. J. Petrol. 26 (2), 301312.CrossRefGoogle Scholar
Sharqawy, M.H., Lienhard, J.H. & Zubair, S.M. 2010 Thermophysical properties of seawater: a review of existing correlations and data. Desalin. Water Treat. 16 (1–3), 354380.CrossRefGoogle Scholar
Shinjo, J. & Umemura, A. 2010 Simulation of liquid jet primary breakup: dynamics of ligament and droplet formation. Intl J. Multiphase Flow 36 (7), 513532.CrossRefGoogle Scholar
Shirani, E., Jafari, A. & Ashgriz, N. 2006 Turbulence models for flows with free surfaces and interfaces. AIAA J. 44 (7), 14541462.CrossRefGoogle Scholar
Smith, S.H. & Mungal, M.G. 1998 Mixing, structure and scaling of the jet in crossflow. J. Fluid Mech. 357, 83122.CrossRefGoogle Scholar
Socolofsky, S.A. & Adams, E.E. 2002 Multi-phase plumes in uniform and stratified crossflow. J. Hydraul Res. 40 (6), 661672.CrossRefGoogle Scholar
Socolofsky, S.A., Adams, E.E. & Sherwood, C.R. 2011 Formation dynamics of subsurface hydrocarbon intrusions following the deepwater horizon blowout. Geophys. Res. Lett. 38 (9), L09602.CrossRefGoogle Scholar
Socolofsky, S.A., Crounse, B.C. & Adams, E.E. 2002 Multiphase plumes in uniform, stratified, and flowing environments. In Environmental Fluid Mechanics – Theories and Applications (ed. H. Shen, A. Cheng, K.-H. Wang, M. H. Teng & C.C.K. Liu), chap. 4, pp. 85–125. ASCE/Fluids Committee.Google Scholar
Socolofsky, S.A., Gros, J., North, E., Boufadel, M.C., Parkerton, T.F. & Adams, E.E. 2019 The treatment of biodegradation in models of sub-surface oil spills: a review and sensitivity study. Mar. Pollut. Bull. 143, 204219.CrossRefGoogle ScholarPubMed
Su, L.K. & Mungal, M.G. 2004 Simultaneous measurements of scalar and velocity field evolution in turbulent crossflowing jets. J. Fluid Mech. 513, 145.CrossRefGoogle Scholar
Tsouris, C. & Tavlarides, L.L. 1994 Breakage and coalescence models for drops in turbulent dispersions. AIChE J. 40 (3), 395406.CrossRefGoogle Scholar
Vreman, B., Geurts, B. & Kuerten, H. 1997 Large-eddy simulation of the turbulent mixing layer. J. Fluid Mech. 339, 357390.CrossRefGoogle Scholar
Weller, H.G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12 (6), 620631.CrossRefGoogle Scholar
White, F.M. & Corfield, I. 2006 Viscous Fluid Flow, vol. 3. McGraw-Hill.Google Scholar
de Wit, L., van Rhee, C. & Keetels, G. 2014 Turbulent interaction of a buoyant jet with cross-flow. J. Hydraul. Engng ASCE 140 (12), 04014060.CrossRefGoogle Scholar
Wright, S.J. 1977 Mean behavior of buoyant jets in a crossflow. J. Hydraul. Div. ASCE 103 (5), 499513.CrossRefGoogle Scholar
Yang, D., Chen, B., Socolofsky, S.A., Chamecki, M. & Meneveau, C. 2016 Large-eddy simulation and parameterization of buoyant plume dynamics in stratified flow. J. Fluid Mech. 794, 798833.CrossRefGoogle Scholar
Yoshizawa, A. 1986 Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling. Phys. Fluids 29 (7), 21522164.CrossRefGoogle Scholar
Yu, H., Luo, L.-S. & Girimaji, S.S. 2006 LES of turbulent square jet flow using an MRT lattice Boltzmann model. Comput. Fluids 35 (8–9), 957965.CrossRefGoogle Scholar
Yuan, L.L., Street, R.L. & Ferziger, J.H. 1999 Large-eddy simulations of a round jet in crossflow. J. Fluid Mech. 379, 71104.CrossRefGoogle Scholar
Zhao, L., Boufadel, M.C., Adams, E., Socolofsky, S.A., King, T., Lee, K. & Nedwed, T. 2015 Simulation of scenarios of oil droplet formation from the deepwater horizon blowout. Mar. Pollut. Bull. 101 (1), 304319.CrossRefGoogle ScholarPubMed
Zhao, L., Boufadel, M.C., Lee, K., King, T., Loney, N. & Geng, X. 2016 Evolution of bubble size distribution from gas blowout in shallow water. J. Geophys. Res.: Oceans 121 (3), 15731599.CrossRefGoogle Scholar
Zhao, L., Boufadel, M.C., Socolofsky, S.A., Adams, E., King, T. & Lee, K. 2014 a Evolution of droplets in subsea oil and gas blowouts: development and validation of the numerical model VDROP-J. Mar. Pollut. Bull. 83 (1), 5869.CrossRefGoogle ScholarPubMed
Zhao, L., Torlapati, J., Boufadel, M.C., King, T., Robinson, B. & Lee, K. 2014 b VDROP: a comprehensive model for droplet formation of oils and gases in liquids-incorporation of the interfacial tension and droplet viscosity. Chem. Engng J. 253, 93106.CrossRefGoogle Scholar
Zheng, L. & Yapa, P.D. 2000 Buoyant velocity of spherical and nonspherical bubbles/droplets. J. Hydraul. Engng ASCE 126 (11), 852854.CrossRefGoogle Scholar