Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-z9m8x Total loading time: 1.201 Render date: 2022-10-02T08:09:55.183Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Converging gravity currents over a permeable substrate

Published online by Cambridge University Press:  07 August 2015

Zhong Zheng
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
Sangwoo Shin
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
Howard A. Stone*
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
*
Email address for correspondence: hastone@princeton.edu

Abstract

We study the propagation of viscous gravity currents along a thin permeable substrate where slow vertical drainage is allowed from the boundary. In particular, we report the effect of this vertical fluid drainage on the second-kind self-similar solutions for the shape of the fluid–fluid interface in three contexts: (i) viscous axisymmetric gravity currents converging towards the centre of a cylindrical container; (ii) viscous gravity currents moving towards the origin in a horizontal Hele-Shaw channel with a power-law varying gap thickness in the horizontal direction; and (iii) viscous gravity currents propagating towards the origin of a porous medium with horizontal permeability and porosity gradients in power-law forms. For each of these cases with vertical leakage, we identify a regime diagram that characterizes whether the front reaches the origin or not; in particular, when the front does not reach the origin, we calculate the final location of the front. We have also conducted laboratory experiments with a cylindrical lock gate to generate a converging viscous gravity current where vertical fluid drainage is allowed from various perforated horizontal substrates. The time-dependent position of the propagating front is captured from the experiments, and the front position is found to agree well with the theoretical and numerical predictions when surface tension effects can be neglected.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acton, J. M., Huppert, H. E. & Worster, M. G. 2001 Two-dimensional viscous gravity currents flowing over a deep porous medium. J. Fluid Mech. 440, 359380.CrossRefGoogle Scholar
Atkinson, B. K. 1984 Subcritical crack growth in geological materials. J. Geophys. Res. 89, 40774114.CrossRefGoogle Scholar
Barenblatt, G. I. 1979 Similarity, Self-Similarity, and Intermediate Asymptotics. Consultants Bureau.CrossRefGoogle Scholar
Bear, J. 1972 Dynamics of Fluids in Porous Media. Elsevier.Google Scholar
Class, H. & Ebigbo, A. 2009 A benchmark study on problems related to $\text{CO}_{2}$ storage in geologic formations. Comput. Geosci. 13, 409434.CrossRefGoogle Scholar
Dagan, Z., Weinbaum, S. & Pfeffer, R. 1982 An infinite-series solution for the creeping motion through an orifice of finite length. J. Fluid Mech. 115, 505523.CrossRefGoogle Scholar
Davis, S. H. & Hocking, L. M. 1999 Spreading and imbibition of viscous liquid on a porous base. Phys. Fluids 11, 4857.CrossRefGoogle Scholar
Davis, S. H. & Hocking, L. M. 2000 Spreading and imbibition of viscous liquid on a porous base. II. Phys. Fluids 12, 16461655.CrossRefGoogle Scholar
Diez, J. A., Gratton, R. & Gratton, J. 1992 Self-similar solution of the second kind for a convergent viscous gravity current. Phys. Fluids A 6, 11481155.CrossRefGoogle Scholar
Farcas, A. & Woods, A. W. 2009 The effect of drainage on the capillary retention of $\text{CO}_{2}$ in a layered permeable rock. J. Fluid Mech. 618, 349359.CrossRefGoogle Scholar
Gratton, J. & Minotti, F. 1990 Self-similar viscous gravity currents: phase plane formalism. J. Fluid Mech. 210, 155182.CrossRefGoogle Scholar
Hesse, M. A., Tchelepi, H. A., Cantwell, B. J. & Orr, F. M. Jr. 2007 Gravity currents in horizontal porous layers: transition from early to late self-similarity. J. Fluid Mech. 577, 363383.CrossRefGoogle Scholar
Hesse, M. A. & Woods, A. W. 2010 Buoyant disposal of $\text{CO}_{2}$ during geological storage. Geophys. Res. Lett. 37, L01403.CrossRefGoogle Scholar
Huppert, H. E. 1982 Flow and instability of a viscous current down a slope. Nature 300, 427429.CrossRefGoogle Scholar
Huppert, H. E. & Neufeld, J. A. 2014 The fluid mechanics of carbon dioxide sequestration. Annu. Rev. Fluid Mech. 46, 255272.CrossRefGoogle Scholar
Huppert, H. E. & Woods, A. W. 1995 Gravity driven flows in porous layers. J. Fluid Mech. 292, 5569.CrossRefGoogle Scholar
Jensen, K. H., Valente, A. X. C. N. & Stone, H. A. 2014 Flow rate through microfilters: influence of the pore size distribution, hydrodynamic interactions, wall slip, and inertia. Phys. Fluids 26, 052004.CrossRefGoogle Scholar
Lake, L. W. 1989 Enhanced Oil Recovery. Prentice-Hall.Google Scholar
Lister, J. R. 1992 Viscous flows down an inclined plane from point and line sources. J. Fluid Mech. 242, 631653.CrossRefGoogle Scholar
MacMinn, C. W., Szulczewski, M. L. & Juanes, R. 2010 $\text{CO}_{2}$ migration in saline aquifers. Part 1. Capillary trapping under slope and groundwater flow. J. Fluid Mech. 662, 329351.CrossRefGoogle Scholar
Murray, J. D. 1989 Mathematical Biology. Springer.CrossRefGoogle ScholarPubMed
Neufeld, J. A. & Huppert, H. E. 2009 Modelling carbon dioxide sequestration in layered strata. J. Fluid Mech. 625, 353370.CrossRefGoogle Scholar
Neufeld, J. A., Vella, D. & Huppert, H. E. 2009 The effect of a fissure on storage in a porous medium. J. Fluid Mech. 639, 239259.CrossRefGoogle Scholar
Neufeld, J. A., Vella, D., Huppert, H. E. & Lister, J. R. 2011 Leakage from gravity currents in a porous medium. Part 1. A localized sink. J. Fluid Mech. 666, 391413.CrossRefGoogle Scholar
Nordbotten, J. M. & Celia, M. A. 2006 Similarity solutions for fluid injection into confined aquifers. J. Fluid Mech. 561, 307327.CrossRefGoogle Scholar
Nordbotten, J. M. & Celia, M. A. 2012 Geological Storage of CO2 . Wiley.Google Scholar
Nordbotten, J. M., Kavetski, D., Celia, M. A. & Bachu, S. 2009 Model for $\text{CO}_{2}$ leakage including multiple geological layers and multiple leaky wells. Environ. Sci. Technol. 43, 743749.CrossRefGoogle Scholar
Pegler, S. S., Huppert, H. E. & Neufeld, J. A. 2014a Fluid injection into a confined porous layer. J. Fluid Mech. 745, 592620.CrossRefGoogle Scholar
Pegler, S. S., Huppert, H. E. & Neufeld, J. A. 2014b Fluid migration between confined aquifers. J. Fluid Mech. 757, 330353.CrossRefGoogle Scholar
Phillips, O. W. 1991 Flow and Reactions in Porous Rocks. Cambridge University Press.Google Scholar
Pritchard, D. 2007 Gravity currents over fractured substrates in a porous medium. J. Fluid Mech. 584, 415431.CrossRefGoogle Scholar
Pritchard, D. & Hogg, A. J. 2002 Draining viscous gravity currents in a vertical fracture. J. Fluid Mech. 459, 207216.CrossRefGoogle Scholar
Pritchard, D., Woods, A. W. & Hogg, A. J. 2001 On the slow draining of a gravity current moving through a layered permeable medium. J. Fluid Mech. 444, 2347.CrossRefGoogle Scholar
Sampson, R. A. 1891 On Stokes’s current function. Phil. Trans. R. Soc. Lond. A 182, 449518.CrossRefGoogle Scholar
Seminara, A., Angelini, T. E., Wilking, J. N., Vlamakis, H., Ebrahim, S., Kolter, R., Weitz, D. A. & Brenner, M. P. 2012 Osmotic spreading of bacillus subtilis biofilms driven by an extracellular matrix. Proc. Natl Acad. Sci. USA 109, 11161121.CrossRefGoogle ScholarPubMed
Smith, S. H. 1969 On initial value problems for the flow in a thin sheet of viscous liquid. Z. Angew. Math. Phys. 20, 556560.CrossRefGoogle Scholar
Spannuth, M. J., Neufeld, J. A., Wettlaufer, J. S. & Worster, M. G. 2009 Axisymmetric viscous gravity currents flowing over a porous medium. J. Fluid Mech. 622, 135144.CrossRefGoogle Scholar
Sprinkel, M. M. & DeMars, M. 1995 Gravity-fill polymer crack sealers. Transp. Res. Rec. 1490, 4353.Google Scholar
Vella, D., Neufeld, J. A., Huppert, H. E. & Lister, J. R. 2011 Leakage from gravity currents in a porous medium. Part 2. A line sink. J. Fluid Mech. 666, 414427.CrossRefGoogle Scholar
Vlassak, J. J., Lin, Y. & Tsui, T. Y. 2005 Fracture of organosilicate glass thin films: environmental effects. Mater. Sci. Engng A 391, 159174.CrossRefGoogle Scholar
Weissberg, H. L. 1962 End correction for slow viscous flow through long tubes. Phys. Fluids 5, 10331036.CrossRefGoogle Scholar
Woods, A. W. & Farcas, A. 2009 Capillary entry pressure and the leakage of gravity currents through a sloping layered permeable rock. J. Fluid Mech. 618, 361379.CrossRefGoogle Scholar
Zemoch, P. J., Neufeld, J. A. & Vella, D. 2011 Leakage from inclined porous reservoirs. J. Fluid Mech. 673, 395405.CrossRefGoogle Scholar
Zheng, Z., Christov, I. C. & Stone, H. A. 2014 Influence of heterogeneity on second-kind self-similar solutions for viscous gravity currents. J. Fluid Mech. 747, 218246.CrossRefGoogle Scholar
Zheng, Z., Guo, B., Christov, I. C., Celia, M. A. & Stone, H. A. 2015 Flow regimes for fluid injection into a confined porous medium. J. Fluid Mech. 767, 881909.CrossRefGoogle Scholar
Zheng, Z., Soh, B., Huppert, H. E. & Stone, H. A. 2013 Fluid drainage from the edge of a porous reservoir. J. Fluid Mech. 718, 558568.CrossRefGoogle Scholar
14
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Converging gravity currents over a permeable substrate
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Converging gravity currents over a permeable substrate
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Converging gravity currents over a permeable substrate
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *