Hostname: page-component-54dcc4c588-dbm8p Total loading time: 0 Render date: 2025-10-01T20:10:07.449Z Has data issue: false hasContentIssue false

Coupled dynamics of wall pressure and transpiration, with implications for the modelling of tailored surfaces and turbulent drag reduction

Published online by Cambridge University Press:  18 September 2025

Simon Toedtli*
Affiliation:
National Center for Atmospheric Research, Boulder, CO 80301, USA
Anthony Leonard
Affiliation:
Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
Beverley McKeon
Affiliation:
Stanford University, Department of Mechanical Engineering, Palo Alto, CA 94305, USA
*
Corresponding author: Simon Toedtli, stoedtli@ucar.edu

Abstract

Wall-based active and passive flow control for drag reduction in low-Reynolds-number (${\textit{Re}}$) turbulent flows can lead to three typical phenomena: (i) attenuation or (ii) amplification of the near-wall cycle, and (iii) generation of spanwise rollers. The present study conducts direct numerical simulations of a low ${\textit{Re}}$ turbulent channel flow and demonstrates that each flow response can be generated with a wall transpiration at two sets of spatial scales, termed streak and roller scales. The effect of the transpiration is controlled by its relative phase to the background flow, which can be parametrised by the wall pressure. Streak scales (i) attenuate the near-wall cycle if transpiration and wall pressure are approximately in-phase or (ii) amplify it otherwise, and (iii) roller scales energise spanwise rollers when transpiration and wall pressure are out-of-phase. Conditions for establishing these robust phase relations are derived from the analytical solution to the pressure Poisson equation and rely on splitting the pressure into its fast, slow and Stokes component. The importance of each condition depends on the relative magnitude of the pressure components, which is significantly altered by the transpiration. The analogy in flow response suggests that transpiration with the two scale families and their phase relations to the wall pressure represent fundamental building blocks for flows over tailored surfaces including riblets, porous and permeable walls.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abbassi, M.R., Baars, W.J., Hutchins, N. & Marusic, I. 2017 Skin-friction drag reduction in a high-Reynolds-number turbulent boundary layer via real-time control of large-scale structures. Intl J. Heat Fluid Flow 67, 3041.10.1016/j.ijheatfluidflow.2017.05.003CrossRefGoogle Scholar
Bechert, D.W. & Bartenwerfer, M. 1989 The viscous flow on surfaces with longitudinal ribs. J. Fluid Mech. 206, 105129.10.1017/S0022112089002247CrossRefGoogle Scholar
Bechert, D.W., Bruse, M., Hage, W., Van Der Hoeven, J.G.T. & Hoppe, G. 1997 Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. J. Fluid Mech. 338, 5987.10.1017/S0022112096004673CrossRefGoogle Scholar
Bottaro, A. 2019 Flow over natural or engineered surfaces: an adjoint homogenization perspective. J. Fluid Mech. 877, P1.10.1017/jfm.2019.607CrossRefGoogle Scholar
Bourguignon, J.-L., Tropp, J.A., Sharma, A.S. & McKeon, B.J. 2014 Compact representation of wall-bounded turbulence using compressive sampling. Phys. Fluids 26 (1), 015109.10.1063/1.4862303CrossRefGoogle Scholar
Breugem, W.P., Boersma, B.J. & Uittenbogaard, R.E. 2006 The influence of wall permeability on turbulent channel flow. J. Fluid Mech. 562, 3572.10.1017/S0022112006000887CrossRefGoogle Scholar
Chavarin, A. & Luhar, M. 2020 Resolvent analysis for turbulent channel flow with riblets. AIAA J. 58 (2), 589599.10.2514/1.J058205CrossRefGoogle Scholar
Choi, H. & Moin, P. 1994 Effects of the computational time step on numerical solutions of turbulent flow. J. Comput. Phys. 113 (1), 14.10.1006/jcph.1994.1112CrossRefGoogle Scholar
Choi, H., Moin, P. & Kim, J. 1993 Direct numerical simulation of turbulent flow over riblets. J. Fluid Mech. 255, 503539.10.1017/S0022112093002575CrossRefGoogle Scholar
Choi, H., Moin, P. & Kim, J. 1994 Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech. 262, 75110.10.1017/S0022112094000431CrossRefGoogle Scholar
Chorin, A.J. & Marsden, J.E. 1993 A Mathematical Introduction to Fluid Mechanics. Springer.10.1007/978-1-4612-0883-9CrossRefGoogle Scholar
Chung, Y.M. & Sung, H.J. 2003 Sensitivity study of turbulence control with wall blowing and suction. In Third Symposium on Turbulence and Shear Flow Phenomena, Begel House Inc.Google Scholar
Chung, Y.M. & Talha, T. 2011 Effectiveness of active flow control for turbulent skin friction drag reduction. Phys. Fluids 23 (2), 025102.10.1063/1.3553278CrossRefGoogle Scholar
Dacome, G., Siebols, R. & Baars, W.J. 2023 Inner-scaled Helmholtz resonators with grazing turbulent boundary layer flow. arXiv: 2308.07776.Google Scholar
Deng, B.-Q., Huang, W.-X. & Xu, C.-X. 2016 Origin of effectiveness degradation in active drag reduction control of turbulent channel flow at Re τ = 1000. J. Turbul. 17 (8), 758786.10.1080/14685248.2016.1181266CrossRefGoogle Scholar
Efstathiou, C. & Luhar, M. 2018 Mean turbulence statistics in boundary layers over high-porosity foams. J. Fluid Mech. 841, 351379.10.1017/jfm.2018.57CrossRefGoogle Scholar
Endrikat, S., Modesti, D., García-Mayoral, R., Hutchins, N. & Chung, D. 2021 Influence of riblet shapes on the occurrence of Kelvin–Helmholtz rollers. J. Fluid Mech. 913, A37.10.1017/jfm.2021.2CrossRefGoogle Scholar
Flores, O. & Jiménez, J. 2006 Effect of wall-boundary disturbances on turbulent channel flows. J. Fluid Mech. 566, 357376.10.1017/S0022112006001534CrossRefGoogle Scholar
Fukagata, K., Iwamoto, K. & Kasagi, N. 2002 Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14 (11), L73L76.10.1063/1.1516779CrossRefGoogle Scholar
García-Mayoral, R. & Jiménez, J. 2011 Hydrodynamic stability and breakdown of the viscous regime over riblets. J. Fluid Mech. 678, 317347.10.1017/jfm.2011.114CrossRefGoogle Scholar
Gómez-de Segura, G. & García-Mayoral, R. 2019 Turbulent drag reduction by anisotropic permeable substrates – analysis and direct numerical simulations. J. Fluid Mech. 875, 124172.10.1017/jfm.2019.482CrossRefGoogle Scholar
Gresho, P.M. & Sani, R.L. 1987 On pressure boundary conditions for the incompressible Navier–Stokes equations. Intl J. Numer. Meth. Flow 7 (10), 11111145.10.1002/fld.1650071008CrossRefGoogle Scholar
Guastoni, L., Rabault, J., Schlatter, P., Azizpour, H. & Vinuesa, R. 2023 Deep reinforcement learning for turbulent drag reduction in channel flows. Eur. Phys. J. E 46 (4), 27.10.1140/epje/s10189-023-00285-8CrossRefGoogle ScholarPubMed
Guseva, A. & Jiménez, J. 2022 Linear instability and resonance effects in large-scale opposition flow control. J. Fluid Mech. 935, A35.10.1017/jfm.2022.34CrossRefGoogle Scholar
Habibi Khorasani, S.M., Lācis, U., Pasche, S., Rosti, M.E. & Bagheri, S. 2022 Near-wall turbulence alteration with the transpiration-resistance model. J. Fluid Mech. 942, A45.10.1017/jfm.2022.358CrossRefGoogle Scholar
Hammond, E.P., Bewley, T.R. & Moin, P. 1998 Observed mechanisms for turbulence attenuation and enhancement in opposition-controlled wall-bounded flows. Phys. Fluids 10 (9), 24212423.10.1063/1.869759CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 a Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.10.1017/S0022112006003946CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 b Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. A: Math. Phys. Engng Sci. 365 (1852), 647664.10.1098/rsta.2006.1942CrossRefGoogle ScholarPubMed
Ibrahim, J.I., Gómez-de-Segura, G., Chung, D. & García-Mayoral, R. 2021 The smooth-wall-like behaviour of turbulence over drag-altering surfaces: a unifying virtual-origin framework. J. Fluid Mech. 915, A56.10.1017/jfm.2021.13CrossRefGoogle Scholar
Jafari, A., McKeon, B.J. & Arjomandi, M. 2023 Frequency-tuned surfaces for passive control of wall-bounded turbulent flow – a resolvent analysis study. J. Fluid Mech. 959, A26.10.1017/jfm.2023.149CrossRefGoogle Scholar
Jafari, A., McKeon, B.J., Cazzolato, B.C. & Arjomandi, M. 2024 A resolvent analysis of the effect of passive perforated surfaces on wall-bounded turbulence. Intl J. Heat Fluid Flow 106, 109315.10.1016/j.ijheatfluidflow.2024.109315CrossRefGoogle Scholar
Jammalamadaka, S.R. & Sen Gupta, A. 2001 Topics in circular statistics. WORLD SCIENTIFIC.10.1142/4031CrossRefGoogle Scholar
Jiménez, J., Uhlmann, M., Pinelli, A. & Kawahara, G. 2001 Turbulent shear flow over active and passive porous surfaces. J. Fluid Mech. 442, 89117.10.1017/S0022112001004888CrossRefGoogle Scholar
Kim, E. & Choi, H. 2014 Space–time characteristics of a compliant wall in a turbulent channel flow. J. Fluid Mech. 756, 3053.10.1017/jfm.2014.444CrossRefGoogle Scholar
Kim, E. & Choi, H. 2017 Linear proportional–integral control for skin-friction reduction in a turbulent channel flow. J. Fluid Mech. 814, 430451.10.1017/jfm.2017.33CrossRefGoogle Scholar
Kim, J. 1989 On the structure of pressure fluctuations in simulated turbulent channel flow. J. Fluid Mech. 205, 421451.10.1017/S0022112089002090CrossRefGoogle Scholar
Kim, J. 2011 Physics and control of wall turbulence for drag reduction. Phil. Trans. R. Soc. A: Math. Phys. Engng Sci. 369, 13961411.10.1098/rsta.2010.0360CrossRefGoogle ScholarPubMed
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.10.1017/S0022112087000892CrossRefGoogle Scholar
Koumoutsakos, P. 1999 Vorticity flux control for a turbulent channel flow. Phys. Fluids 11 (2), 248250.10.1063/1.869874CrossRefGoogle Scholar
Lee, J. 2015 Opposition control of turbulent wall-bounded flow using upstream sensor. J. Mech. Sci. Technol. 29 (11), 47294735.10.1007/s12206-015-1020-2CrossRefGoogle Scholar
Lee, M. & Moser, R.D. 2015 Direct numerical simulation of turbulent channel flow up to Re τ = 5200. J. Fluid Mech. 774, 395415.10.1017/jfm.2015.268CrossRefGoogle Scholar
Luchini, P., Manzo, F. & Pozzi, A. 1991 Resistance of a grooved surface to parallel flow and cross-flow. J. Fluid Mech. 228, 87109.10.1017/S0022112091002641CrossRefGoogle Scholar
Luhar, M., Sharma, A.S. & McKeon, B.J. 2014 a On the structure and origin of pressure fluctuations in wall turbulence: predictions based on the resolvent analysis. J. Fluid Mech. 751, 3870.10.1017/jfm.2014.283CrossRefGoogle Scholar
Luhar, M., Sharma, A.S. & McKeon, B.J. 2014 b Opposition control within the resolvent analysis framework. J. Fluid Mech. 749, 597626.10.1017/jfm.2014.209CrossRefGoogle Scholar
Luhar, M., Sharma, A.S. & McKeon, B.J. 2015 A framework for studying the effect of compliant surfaces on wall turbulence. J. Fluid Mech. 768, 415441.10.1017/jfm.2015.85CrossRefGoogle Scholar
Marusic, I., Chandran, D., Rouhi, A., Fu, M.K., Wine, D., Holloway, B., Chung, D. & Smits, A.J. 2021 An energy-efficient pathway to turbulent drag reduction. Nat. Commun. 12 (1), 5805.10.1038/s41467-021-26128-8CrossRefGoogle ScholarPubMed
McKeon, B.J. & Sharma, A.S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.10.1017/S002211201000176XCrossRefGoogle Scholar
Rosti, M.E., Brandt, L. & Pinelli, A. 2018 Turbulent channel flow over an anisotropic porous wall – drag increase and reduction. J. Fluid Mech. 842, 381394.10.1017/jfm.2018.152CrossRefGoogle Scholar
Sonoda, T., Liu, Z., Itoh, T. & Hasegawa, Y. 2023 Reinforcement learning of control strategies for reducing skin friction drag in a fully developed turbulent channel flow. J. Fluid Mech. 960, A30.10.1017/jfm.2023.147CrossRefGoogle Scholar
Tennekes, H. & Lumley, J.L. 1972 A First Course in Turbulence. MIT Press.10.7551/mitpress/3014.001.0001CrossRefGoogle Scholar
Toedtli, S. 2021 Control of wall-bounded turbulence through closed-loop wall transpiration. PhD thesis, California Institute of Technology, Pasadena, CA.Google Scholar
Toedtli, S., Yu, C. & McKeon, B. 2020 On the origin of drag increase in varying-phase opposition control. Intl J. Heat Fluid Flow 85, 108651.10.1016/j.ijheatfluidflow.2020.108651CrossRefGoogle Scholar
Toedtli, S.S., Luhar, M. & McKeon, B.J. 2019 a Predicting the response of turbulent channel flow to varying-phase opposition control: resolvent analysis as a tool for flow control design. Phys. Rev. Fluids 4, 073905.10.1103/PhysRevFluids.4.073905CrossRefGoogle Scholar
Toedtli, S.S., Yu, C.H. & McKeon, B.J. 2019 b Structural and spectral analysis of varying-phase opposition control in turbulent channel flow. In Proc. 11th Intl Symposium on Turbulence and Shear Flow Phenomena 2019, pp. 37. University of Southampton.Google Scholar
Wang, Y., Atzori, M. & Vinuesa, R. 2024 Opposition control applied to turbulent wings. arXiv:2408.15588.10.1017/jfm.2025.338CrossRefGoogle Scholar
Xu, S., Rempfer, D. & Lumley, J. 2003 Turbulence over a compliant surface: numerical simulation and analysis. J. Fluid Mech. 478, 1134.10.1017/S0022112002003324CrossRefGoogle Scholar
Yao, J. & Hussain, F. 2021 Drag reduction via opposition control in a compressible turbulent channel. Phys. Rev. Fluids 6, 114602.10.1103/PhysRevFluids.6.114602CrossRefGoogle Scholar
Zhou, Z., Zhang, M. & Zhu, X. 2025 Reinforcement-learning-based control of turbulent channel flows at high Reynolds numbers. J. Fluid Mech. 1006, A12.10.1017/jfm.2025.27CrossRefGoogle Scholar