Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-9m8n8 Total loading time: 0.712 Render date: 2022-10-02T10:37:42.142Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Critical reflection and abyssal trapping of near-inertial waves on a β-plane

Published online by Cambridge University Press:  28 September 2011

Kraig B. Winters*
Affiliation:
Scripps Institution of Oceanography, Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0209, USA
Pascale Bouruet-Aubertot
Affiliation:
Laboratoire d’océanographie et du climat: expérimentation et approches numériques, UPMC/CRNS, BP 100, 4 place Jussieu, 75252 Paris CEDEX 05, France
Theo Gerkema
Affiliation:
Royal Netherlands Institute for Sea Research, NL-1790 AB Den Burg (Texel), The Netherlands
*
Email address for correspondence: kraig@coast.ucsd.edu

Abstract

We consider near-inertial waves continuously excited by a localized source and their subsequent radiation and evolution on a two-dimensional -plane. Numerical simulations are used to quantify the wave propagation and the energy flux in a realistically stratified ocean basin. We focus on the dynamics near and poleward of the inertial latitude where the local value of the Coriolis parameter matches the forcing frequency , contrasting the behaviour of waves under the traditional approximation (TA), where only the component of the Earth’s rotation aligned with gravity is retained in the dynamics, with that obtained under the non-traditional approach (non-TA) in which the horizontal component of rotation is retained. Under the TA, assuming inviscid linear wave propagation in the WKB limit, all energy radiated from the source eventually propagates toward the equator, with the initially poleward propagation being internally reflected at the inertial latitude. Under the non-TA however, these waves propagate sub-inertially beyond their inertial latitude, exhibiting multiple reflections between internal turning points that lie poleward of the inertial latitude and the bottom. The numerical experiments complement and extend existing theory by relaxing the linearity and WKB approximations, and by illustrating the time development of the steadily forced flow and the spatial patterns of energy flux and flux divergence. The flux divergence of the flow at both the forcing frequency and its first harmonic reveal the spatial patterns of nonlinear energy transfer and highlight the importance of nonlinearity in the vicinity of near-critical bottom reflection at the inertial latitude of the forced waves.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bouruet-Aubertot, P., Koudella, C., Staquet, C. & Winters, K. B. 2001 Particle dispersion and mixing induced by breaking internal gravity waves. Dyn. Atmos. Oceans 33, 95134.CrossRefGoogle Scholar
2. D’Asaro, E. A., Eriksen, C. C., Levine, M. A., Niiler, P., Paulson, C. A. & van Meurs, P. 1995 Upper ocean inertial currents forced by a strong storm. Part I: data and comparisons with linear theory. J. Phys. Oceanogr. 25, 29092936.2.0.CO;2>CrossRefGoogle Scholar
3. Dauxois, T. & Young, W. R. 1999 Near critical reflection of internal waves. J. Fluid Mech. 390, 271295.CrossRefGoogle Scholar
4. Dintrans, B., Rieutord, M. & Valdettaro, L. 1999 Gravito-inertial waves in a rotating stratified sphere or spherical shell. J. Fluid Mech. 398, 271297.CrossRefGoogle Scholar
5. Durran, D. & Bretherton, C. 2004 Comments on ‘The roles of the horizontal component of the Earth’s angular velocity in nonhydrostatic linear models’. J. Atmos. Sci. 61, 19821986.2.0.CO;2>CrossRefGoogle Scholar
6. Eriksen, C. C. 1985 Implications of ocean bottom reflection for internal wave spectra and mixing. J. Phys. Oceanogr. 15, 11451156.2.0.CO;2>CrossRefGoogle Scholar
7. Friedlander, S. & Siegmann, W. L. 1982 Internal waves in a rotating stratified fluid in an arbitrary gravitational field. Geophys. Astrophys. Fluid Dyn. 19, 267291.CrossRefGoogle Scholar
8. Gerkema, T. & Exarchou, E. 2008 Internal-wave properties in weakly stratified layers. J. Mar. Res. 66, 617644.CrossRefGoogle Scholar
9. Gerkema, T. & Shrira, V. I. 2005a Near-inertial waves on the ‘nontraditional’ -plane. J Geophys. Res. 110, C01003.CrossRefGoogle Scholar
10. Gerkema, T. & Shrira, V. I. 2005b Near-inertial waves in the ocean: beyond the ‘traditional approximation’. J. Fluid Mech. 529, 195219.CrossRefGoogle Scholar
11. Gerkema, T., Staquet, C. & Bouruet-Aubertot, P. 2006 Decay of semi-diurnal internal-tide beams due to subharmonic resonance. Geophys. Res. Lett. 33, L08604.CrossRefGoogle Scholar
12. Gerkema, T., Zimmerman, J. T. F., Maas, L. R. M. & van Haren, H. 2008 Geophysical and astrophysical fluid dynamics beyond the traditional approximation. Rev. Geophys. 46, RG2004.CrossRefGoogle Scholar
13. Gilbert, D. & Garrett, C. 1989 Implications for ocean mixing of internal wave scattering off irregular topography. J. Phys. Oceanogr. 19, 17161729.2.0.CO;2>CrossRefGoogle Scholar
14. Grimshaw, R. H. J. 1975 A note on the -plane approximation. Tellus 27, 351357.CrossRefGoogle Scholar
15. Harlander, U. & Maas, L. R. M. 2006 Characteristics and energy rays of equatorially trapped, zonally symmetric internal waves. Meteorol. Z. 15 (4), 439450.CrossRefGoogle Scholar
16. Hazewinkel, J. & Winters, K. B. 2011 PSI of the internal tide on a -plane: flux divergence and near-inertial wave propagation. J. Phys Oceanogr. (accepted).Google Scholar
17. Holliday, D. & Mcintyre, M. E. 1981 On potential energy density in an incompressible, stratified fluid. J. Fluid Mech. 107, 221225.CrossRefGoogle Scholar
18. Ivey, G. N. & Nokes, R. I. 1989 Vertical mixing due to the breaking of critical internal waves on sloping boundaries. J. Fluid Mech. 204, 479500.CrossRefGoogle Scholar
19. Ivey, G. N., Winters, K. B. & De Silva, I. P. D. 2000 Turbulent mixing in a sloping benthic boundary layer energised by internal waves. J. Fluid Mech. 418, 5976.CrossRefGoogle Scholar
20. Kasahara, A. 2003 The roles of the horizontal component of the Earth’s angular velocity in nonhydrostatic linear models. J. Atmos. Sci. 60, 10851095.2.0.CO;2>CrossRefGoogle Scholar
21. Kasahara, A. 2004 Reply to Comments on ‘The roles of the horizontal component of the Earth’s angular velocity in nonhydrostatic linear models’. J. Atmos. Sci. 61, 19871991.2.0.CO;2>CrossRefGoogle Scholar
22. Lele, S. K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 1642.CrossRefGoogle Scholar
23. Maas, L. R. M. 2001 Wave focusing and ensuing mean flow due to symmetry breaking in rotating fluids. J. Fluid Mech. 437, 1328.CrossRefGoogle Scholar
24. Maas, L. R. M. 2005 Wave attractors: linear yet nonlinear. Intl J. Bifurcations Chaos 15 (9), 27572782.CrossRefGoogle Scholar
25. MacKinnon, J. A. & Winters, K. B. 2005 Subtropical catastrophe: significant loss of low-mode tidal energy at 28.9 . Geophys. Res. Lett. 32, L15605.CrossRefGoogle Scholar
26. McComas, C. H. & Bretherton, F. P. 1977 Resonant interaction of oceanic internal waves: the dynamic balance of internal waves. J. Geophys. Res. 82, 13971412.CrossRefGoogle Scholar
27. Mercier, M. J., Garnier, N. B. & Dauxois, T. 2008 Reflection and diffraction of internal waves analyzed with the Hilbert transform. Phys. Fluids 20, 086601.CrossRefGoogle Scholar
28. Slinn, D. N. & Riley, J. J. 1998 Turbulent dynamics of a critically reflecting internal gravity wave. Theor. Comput. Fluid Dyn. 11, 281303.CrossRefGoogle Scholar
29. Winters, K. B., MacKinnon, J. A. & Mills, B. 2004 A spectral model for process studies of rotating, density-stratified flows. J. Atmos. Ocean. Technol. 21, 6994.2.0.CO;2>CrossRefGoogle Scholar
30. Veronis, G. 1970 The analogy between rotating and stratified fluids. Annu. Rev. Fluid Mech. 2, 3766.CrossRefGoogle Scholar
15
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Critical reflection and abyssal trapping of near-inertial waves on a β-plane
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Critical reflection and abyssal trapping of near-inertial waves on a β-plane
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Critical reflection and abyssal trapping of near-inertial waves on a β-plane
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *