Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-29T11:03:15.646Z Has data issue: false hasContentIssue false

Designing a minimal baffle to destabilise turbulence in pipe flows

Published online by Cambridge University Press:  13 August 2020

Elena Marensi*
Affiliation:
School of Mathematics and Statistics, University of Sheffield, SheffieldS3 7RH, UK
Zijing Ding
Affiliation:
Centre for Mathematical Sciences, University of Cambridge, CambridgeCB3 0WA, UK
Ashley P. Willis
Affiliation:
School of Mathematics and Statistics, University of Sheffield, SheffieldS3 7RH, UK
Rich R. Kerswell
Affiliation:
Centre for Mathematical Sciences, University of Cambridge, CambridgeCB3 0WA, UK
*
Email address for correspondence: elena.marensi@ist.ac.at

Abstract

Motivated by the results of recent experiments (Kühnen et al., Flow Turbul. Combust., vol. 100, 2018, pp. 919–943), we consider the problem of designing a baffle (an obstacle to the flow) to relaminarise turbulence in pipe flows. Modelling the baffle as a spatial distribution of linear drag ${\boldsymbol {F}}(\boldsymbol {x},t)=-\chi (\boldsymbol {x})\boldsymbol {u}_{tot}(\boldsymbol {x},t)$ within the flow ($\boldsymbol {u}_{tot}$ is the total velocity field and $\chi \ge 0$ a scalar field), two different optimisation problems are considered to design $\chi$ at a Reynolds number $Re=3000$. In the first, the smallest baffle defined in terms of a $L_1$ norm of $\chi$ is sought which minimises the viscous dissipation rate of the flow. In the second, a baffle which minimises the total energy consumption of the flow is treated. Both problems indicate that the baffle should be axisymmetric and radially localised near the pipe wall, but struggle to predict the optimal streamwise extent. A manual search finds an optimal baffle one radius long which is then used to study how the amplitude for relaminarisation varies with $Re$ up to $15\,000$. Large stress reduction is found at the pipe wall, but at the expense of an increased pressure drop across the baffle. Estimates are then made of the break-even point downstream of the baffle where the stress reduction at the wall due to the relaminarised flow compensates for the extra drag produced by the baffle.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aghdam, S. K. & Ricco, P. 2016 Laminar and turbulent flows over hydrophobic surfaces with shear-dependent slip length. Phys. Fluids 28 (3), 035109.CrossRefGoogle Scholar
Angot, P., Bruneau, C.-H. & Fabrie, P. 1999 A penalization method to take into account obstacles in incompressible viscous flows. Numer. Math. 81 (4), 497520.CrossRefGoogle Scholar
Auteri, F., Baron, A., Belan, M., Campanardi, G. & Quadrio, M. 2010 Experimental assessment of drag reduction by traveling waves in a turbulent pipe flow. Phys. Fluids 22 (11), 115103.CrossRefGoogle Scholar
Barkley, D., Song, B., Mukund, V., Lemoult, G., Avila, M. & Hof, B. 2015 The rise of fully turbulent flow. Nature 526, 550553.CrossRefGoogle ScholarPubMed
Bewley, T. R., Moin, P. & Temam, R. 2001 DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms. J. Fluid Mech. 447, 179225.CrossRefGoogle Scholar
Blasius, H. 1913 Das ähnlichkeitsgesetz bei reibungsvorgängen in flüssigkeiten. In Mitteilungen über Forschungsarbeiten auf dem Gebiete des Ingenieurwesens, pp. 1–41. Springer.CrossRefGoogle Scholar
Brandt, L. 2014 The lift-up effect: the linear mechanism behind transition and turbulence in shear flows. Eur. J. Mech. B/Fluids 47, 8096.CrossRefGoogle Scholar
Budanur, N. B., Marensi, E., Willis, A. P & Hof, B. 2020 Upper edge of chaos and the energetics of transition in pipe flow. Phys. Rev. Fluids 5 (2), 023903.CrossRefGoogle Scholar
Cherubini, S. & De Palma, P. 2014 Minimal perturbations approaching the edge of chaos in a Couette flow. Fluid Dyn. Res. 46 (4), 041403.CrossRefGoogle Scholar
Cherubini, S., De Palma, P., Robinet, J.-C. & Bottaro, A. 2011 The minimal seed of turbulent transition in the boundary layer. J. Fluid Mech. 689, 221253.CrossRefGoogle Scholar
Cherubini, S., De Palma, P., Robinet, J.-Ch. & Bottaro, A. 2012 A purely nonlinear route to transition approaching the edge of chaos in a boundary layer. Fluid Dyn. Res. 44 (3), 031404.CrossRefGoogle Scholar
Choi, H., Moin, P. & Kim, J. 1994 Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech. 262, 75110.CrossRefGoogle Scholar
Choueiri, G. H., Lopez, J. M. & Hof, B. 2018 Exceeding the asymptotic limit of polymer drag reduction. Phys. Rev. Lett. 120 (12), 124501.CrossRefGoogle ScholarPubMed
Du, Y. & Karniadakis, G. E. 2000 Suppressing wall turbulence by means of a transverse traveling wave. Science 288 (5469), 12301234.CrossRefGoogle ScholarPubMed
Duguet, Y., Monokrousos, A., Brandt, L. & Henningson, D. S. 2013 Minimal transition thresholds in plane Couette flow. Phys. Fluids 25 (8), 084103.CrossRefGoogle Scholar
Eckhardt, B., Schneider, T. M., Hof, B. & Westerweel, J. 2007 Turbulence transition in pipe flow. Annu. Rev. Fluid Mech. 29, 447468.CrossRefGoogle Scholar
García-Mayoral, R. & Jiménez, J. 2011 Drag reduction by riblets. Phil. Trans. R. Soc. Lond. A 369 (1940), 14121427.CrossRefGoogle ScholarPubMed
He, S., He, K. & Seddighi, M. 2016 Laminarisation of flow at low Reynolds number due to streamwise body force. J. Fluid Mech. 809, 3171.CrossRefGoogle Scholar
Hof, B., De Lozar, A., Avila, M., Tu, X. & Schneider, T. M. 2010 Eliminating turbulence in spatially intermittent flows. Science 327 (5972), 14911494.CrossRefGoogle ScholarPubMed
Jiménez, J. & Pinelli, A. 1999 The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335359.CrossRefGoogle Scholar
Keefe, L. R. 1998 Method and apparatus for reducing the drag of flows over surfaces. US Patent 5,803,409.Google Scholar
Kerswell, R. R. 2018 Nonlinear nonmodal stability theory. Annu. Rev. Fluid Mech. 50 (1), 319345.CrossRefGoogle Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.CrossRefGoogle Scholar
Krasnov, D., Zikanov, O., Schumacher, J. & Boeck, T. 2008 Magnetohydrodynamic turbulence in a channel with spanwise magnetic field. Phys. Fluids 20 (9), 095105.CrossRefGoogle Scholar
Kühnen, J., Scarselli, D. & Hof, B. 2019 Relaminarization of pipe flow by means of 3D-printed shaped honeycombs. J. Fluids Engng 141 (11), 111105.CrossRefGoogle Scholar
Kühnen, J., Scarselli, D., Schaner, M. & Hof, B. 2018 a Relaminarization by steady modification of the streamwise velocity profile in a pipe. Flow Turbul. Combust. 100 (4), 919943.CrossRefGoogle Scholar
Kühnen, J., Song, B., Scarselli, D., Budanur, N. B., Riedl, M., Willis, A. P., Avila, M. & Hof, B. 2018 b Destabilizing turbulence in pipe flow. Nat. Phys. 14 (4), 386390.CrossRefGoogle Scholar
Marensi, E., Willis, A. P. & Kerswell, R. R. 2019 Stabilisation and drag reduction of pipe flows by flattening the base profile. J. Fluid Mech. 863, 850875.CrossRefGoogle Scholar
Min, T. & Kim, J 2004 Effects of hydrophobic surface on skin-friction drag. Phys. Fluids 16 (7), L55L58.CrossRefGoogle Scholar
Monokrousos, A., Bottaro, A., Brandt, L., Di Vita, A. & Henningson, D. S. 2011 Nonequilibrium thermodynamics and the optimal path to turbulence in shear flows. Phys. Rev. Lett. 106 (13), 134502.CrossRefGoogle ScholarPubMed
Nield, D. A. 1991 The limitations of the Brinkman–Forchheimer equation in modeling flow in a saturated porous medium and at an interface. Intl J. Heat Fluid Flow 12 (3), 269272.CrossRefGoogle Scholar
Owolabi, B. E., Dennis, D. J. C. & Poole, R. J. 2017 Turbulent drag reduction by polymer additives in parallel-shear flows. J. Fluid Mech. 827, R4.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Pringle, C. C. T. & Kerswell, R. R. 2010 Using nonlinear transient growth to construct the minimal seed for shear flow turbulence. Phys. Rev. Lett. 105, 154502.CrossRefGoogle ScholarPubMed
Pringle, C. C. T., Willis, A. P. & Kerswell, R. R. 2012 Minimal seeds for shear flow turbulence: using nonlinear transient growth to touch the edge of chaos. J. Fluid Mech. 702, 415443.CrossRefGoogle Scholar
Pringle, C. C. T., Willis, A. P. & Kerswell, R. R. 2015 Fully localised nonlinear energy growth optimals in pipe flow. Phys. Fluids 27, 064102.CrossRefGoogle Scholar
Quadrio, M. 2011 Drag reduction in turbulent boundary layers by in-plane wall motion. Phil. Trans. R. Soc. Lond. A 369 (1940), 14281442.CrossRefGoogle ScholarPubMed
Quadrio, M. & Sibilla, S. 2000 Numerical simulation of turbulent flow in a pipe oscillating around its axis. J. Fluid Mech. 424, 217241.CrossRefGoogle Scholar
Rabin, S. M. E., Caulfield, C. P. & Kerswell, R. R. 2012 Triggering turbulence efficiently in plane Couette flow. J. Fluid Mech. 712, 244272.CrossRefGoogle Scholar
Rabin, S. M. E., Caulfield, C. P. & Kerswell, R. R. 2014 Designing a more nonlinearly stable laminar flow via boundary manipulation. J. Fluid Mech. 738, 112.CrossRefGoogle Scholar
Scarselli, D., Kühnen, J. & Hof, B. 2019 Relaminarising pipe flow by wall movement. J. Fluid Mech. 867, 934948.CrossRefGoogle Scholar
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows. Springer Science and Business Media.CrossRefGoogle Scholar
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.CrossRefGoogle Scholar
Song, B. 2014 Direct numerical simulation of transition to turbulence and turbulence control in pipe flow. PhD thesis, Niedersächsische Staats-und Universitätsbibliothek Göttingen.Google Scholar
Sreenivasan, K. R. 1982 Laminarescent, relaminarizing and retransitional flows. Acta Mech. 44 (1–2), 148.CrossRefGoogle Scholar
Toms, B. A. 1948 Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. In Proceedings of the First International Congress on Rheology, vol. II, pp. 135–141. North Holland.Google Scholar
Tuerke, F. & Jiménez, J. 2013 Simulations of turbulent channels with prescribed velocity profiles. J. Fluid Mech. 723, 587603.CrossRefGoogle Scholar
Virk, P. S., Merrill, E. W., Mickley, H. S., Smith, K. A. & Mollo-Christensen, E. L. 1967 The Toms phenomenon: turbulent pipe flow of dilute polymer solutions. J. Fluid Mech. 30 (2), 305328.CrossRefGoogle Scholar
Waleffe, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9, 883900.CrossRefGoogle Scholar
Willis, A. P. 2017 The openpipeflow Navier–Stokes solver. SoftwareX 6, 124127.CrossRefGoogle Scholar
Willis, A. P., Peixinho, J., Kerswell, R. R. & Mullin, T. 2008 Experimental and theoretical progress in pipe flow transition. Phil. Trans. R. Soc. Lond. A 366, 26712684.CrossRefGoogle ScholarPubMed
Wygnanski, I. J. & Champagne, F. H. 1973 On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug. J. Fluid Mech. 59, 281335.CrossRefGoogle Scholar
Xu, C.-X., Choi, J.-I. & Sung, H. J. 2002 Suboptimal control for drag reduction in turbulent pipe flow. Fluid Dyn. Res. 30 (4), 217231.CrossRefGoogle Scholar
Yudhistira, I. & Skote, M. 2011 Direct numerical simulation of a turbulent boundary layer over an oscillating wall. J. Turbul. 12, N9.CrossRefGoogle Scholar