Skip to main content Accessibility help
×
Home
Hostname: page-component-78bd46657c-gwmzn Total loading time: 1.9 Render date: 2021-05-06T08:05:46.686Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Direct numerical simulations of hypersonic boundary-layer transition with finite-rate chemistry

Published online by Cambridge University Press:  14 August 2014

Olaf Marxen
Affiliation:
Aeronautics and Aerospace Department, von Kármán Institute for Fluid Dynamics, Chaussée de Waterloo, 72, 1640 Rhode-St-Genèse, Belgium
Gianluca Iaccarino
Affiliation:
Center for Turbulence Research, Building 500, Stanford University, Stanford, CA 94305-3035, USA
Thierry E. Magin
Affiliation:
Aeronautics and Aerospace Department, von Kármán Institute for Fluid Dynamics, Chaussée de Waterloo, 72, 1640 Rhode-St-Genèse, Belgium
Corresponding
E-mail address:

Abstract

The paper describes a numerical investigation of linear and nonlinear instability in high-speed boundary layers. Both a frozen gas and a finite-rate chemically reacting gas are considered. The weakly nonlinear instability in the presence of a large-amplitude two-dimensional wave is investigated for the case of fundamental resonance. Depending on the amplitude of this two-dimensional primary wave, strong growth of oblique secondary perturbations occurs for favourable relative phase differences between the two. For essentially the same primary amplitude, secondary amplification is almost identical for a reacting and a frozen gas. Therefore, chemical reactions do not directly affect the growth of secondary perturbations, but only indirectly through the change of linear instability and hence amplitude of the primary wave. When the secondary disturbances reach a sufficiently large amplitude, strongly nonlinear effects stabilize both primary and secondary perturbations.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below.

References

Chang, C.-L. & Malik, M. R. 1994 Oblique-mode breakdown and secondary instability in supersonic boundary layers. J. Fluid Mech. 273, 323360.CrossRefGoogle Scholar
Eissler, W. & Bestek, H. 1996 Spatial numerical simulations of linear and weakly nonlinear wave instabilities in supersonic boundary layers. Theor. Comput. Fluid Dyn. 8 (3), 219235.CrossRefGoogle Scholar
Fedorov, A. V. 2011 Transition and stability of high-speed boundary layers. Annu. Rev. Fluid Mech. 43, 7995.CrossRefGoogle Scholar
Fezer, A. & Kloker, M. 2003 DNS of transition mechanisms at Mach 6.8 – flat plate versus sharp cone. In West East High Speed Flow Fields 2002 (ed. Zeitoun, D. E., Periaux, J., Desideri, J. A. & Marini, M.), pp. 434441. CIMNE.Google Scholar
Franko, K. J., MacCormack, R. W. & Lele, S. K.2010 Effects of chemistry modeling on hypersonic boundary layer linear stability prediction. AIAA Paper 2010-4601.Google Scholar
Fujii, K. & Hornung, H. G. 2003 Experimental investigation of high-enthalpy effects on attachment-line boundary-layer transition. AIAA J. 41 (7), 12821291.CrossRefGoogle Scholar
Germain, P. D. & Hornung, H. G. 1997 Transition on a slender cone in hypervelocity flow. Exp. Fluids 22, 183190.CrossRefGoogle Scholar
Herbert, T. 1988 Secondary instability of boundary layers. Annu. Rev. Fluid Mech. 20, 487526.CrossRefGoogle Scholar
Herbert, T. 1997 Parabolized stability equations. Annu. Rev. Fluid Mech. 29, 245283.CrossRefGoogle Scholar
Hornung, H. G. 2006 Hypersonic real-gas effects on transition. In IUTAM Symposium on One Hundred Years of Boundary Layer Research (ed. Meier, G. & Sreenivasan, K.), pp. 335344. Springer.CrossRefGoogle Scholar
Johnson, H. B., Seipp, T. G. & Candler, G. V. 1998 Numerical study of hypersonic reacting boundary layer transition on cones. Phys. Fluids 10 (10), 26762685.CrossRefGoogle Scholar
Kawai, S., Shankar, S. K. & Lele, S. K. 2010 Assessment of localized artificial diffusivity scheme for large-eddy simulation of compressible turbulent flows. J. Comput. Phys. 229 (5), 17391762.CrossRefGoogle Scholar
Mack, L. M.1969 Boundary layer stability theory. NASA Tech. Rep. JPL-900-277-REV-A; NASA-CR-131501. Jet Propulsion Laboratory.Google Scholar
Mack, L. M.1984 Boundary-layer linear stability theory. Tech. Rep. AGARD-R-709.Google Scholar
Malik, M. R. 2003 Hypersonic flight transition data analysis using parabolized stability equations with chemistry effects. J. Spacecr. Rockets 40 (3), 332344.CrossRefGoogle Scholar
Malik, M. R. & Anderson, E. C. 1991 Real gas effects on hypersonic boundary-layer stability. Phys. Fluids A 3 (5), 803821.CrossRefGoogle Scholar
Marxen, O., Iaccarino, G. & Shaqfeh, E. S. G. 2010 Disturbance evolution in a Mach 4.8 boundary layer with two-dimensional roughness-induced separation and shock. J. Fluid Mech. 648, 435469.CrossRefGoogle Scholar
Marxen, O., Magin, T., Iaccarino, G. & Shaqfeh, E. S. G. 2011 A high-order numerical method to study hypersonic boundary-layer instability including high-temperature gas effects. Phys. Fluids 23 (8), 084108.CrossRefGoogle Scholar
Marxen, O., Magin, T., Shaqfeh, E. S. G. & Iaccarino, G. 2013 A method for the direct numerical simulation of hypersonic boundary-layer instability with finite-rate chemistry. J. Comput. Phys. 255, 572589.CrossRefGoogle Scholar
Mayer, C. S. J., von Terzi, D. A. & Fasel, H. F. 2011a Direct numerical simulation of complete transition to turbulence via oblique breakdown at Mach 3. J. Fluid Mech. 674, 542.CrossRefGoogle Scholar
Mayer, C. S. J., Wernz, S. & Fasel, H. F. 2011b Numerical investigation of the nonlinear transition regime in a Mach 2 boundary layer. J. Fluid Mech. 668, 113149.CrossRefGoogle Scholar
Mironov, S. G. & Maslov, A. A. 2000 Experimental study of secondary instability in a hypersonic shock layer on a flat plate. J. Fluid Mech. 412, 259277.CrossRefGoogle Scholar
Nagarajan, S., Lele, S. K. & Ferziger, J. H. 2003 A robust high-order method for large eddy simulation. J. Comput. Phys. 191, 392419.CrossRefGoogle Scholar
Stuckert, G. & Reed, H. L. 1994 Linear disturbances in hypersonic, chemically reacting shock layers. AIAA J. 32 (7), 13841393.CrossRefGoogle Scholar
Tumin, A., Wang, X. & Zhong, X. 2007 Direct numerical simulation and the theory of receptivity in a hypersonic boundary layer. Phys. Fluids 19 (1), 014101.CrossRefGoogle Scholar
Zhong, X. & Wang, X. 2012 Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers. Annu. Rev. Fluid Mech. 44 (1), 527561.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Direct numerical simulations of hypersonic boundary-layer transition with finite-rate chemistry
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Direct numerical simulations of hypersonic boundary-layer transition with finite-rate chemistry
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Direct numerical simulations of hypersonic boundary-layer transition with finite-rate chemistry
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *