Skip to main content Accessibility help
×
Home
Hostname: page-component-558cb97cc8-4xlcd Total loading time: 0.695 Render date: 2022-10-07T08:42:23.020Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": true, "useSa": true } hasContentIssue true

Scaling laws and flow structures of double diffusive convection in the finger regime

Published online by Cambridge University Press:  08 August 2016

Yantao Yang*
Affiliation:
Physics of Fluids Group, MESA$+$ Research Institute, and J. M. Burgers Centre for Fluid Dynamics, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
Roberto Verzicco
Affiliation:
Physics of Fluids Group, MESA$+$ Research Institute, and J. M. Burgers Centre for Fluid Dynamics, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands Dipartimento di Ingegneria Industriale, University of Rome ‘Tor Vergata’, Via del Politecnico 1, Roma 00133, Italy
Detlef Lohse
Affiliation:
Physics of Fluids Group, MESA$+$ Research Institute, and J. M. Burgers Centre for Fluid Dynamics, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands Max-Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
*
Email address for correspondence: yantao.yang@utwente.nl

Abstract

Direct numerical simulations are conducted for double diffusive convection (DDC) bounded by two parallel plates. The Prandtl numbers, i.e. the ratios between the viscosity and the molecular diffusivities of scalars, are similar to the values of seawater. The DDC flow is driven by an unstable salinity difference (here across the two plates) and stabilized at the same time by a temperature difference. For these conditions the flow can be in the finger regime. We develop scaling laws for three key response parameters of the system: the non-dimensional salinity flux $\mathit{Nu}_{S}$ mainly depends on the salinity Rayleigh number $\mathit{Ra}_{S}$, which measures the strength of the salinity difference and exhibits a very weak dependence on the density ratio $\unicode[STIX]{x1D6EC}$, which is the ratio of the buoyancy forces induced by two scalar differences. The non-dimensional flow velocity $Re$ and the non-dimensional heat flux $\mathit{Nu}_{T}$ are dependent on both $\mathit{Ra}_{S}$ and $\unicode[STIX]{x1D6EC}$. However, the rescaled Reynolds number $Re\unicode[STIX]{x1D6EC}^{\unicode[STIX]{x1D6FC}_{u}^{eff}}$ and the rescaled convective heat flux $(\mathit{Nu}_{T}-1)\unicode[STIX]{x1D6EC}^{\unicode[STIX]{x1D6FC}_{T}^{eff}}$ depend only on $\mathit{Ra}_{S}$. The two exponents are dependent on the fluid properties and are determined from the numerical results as $\unicode[STIX]{x1D6FC}_{u}^{eff}=0.25\pm 0.02$ and $\unicode[STIX]{x1D6FC}_{T}^{eff}=0.75\pm 0.03$. Moreover, the behaviours of $\mathit{Nu}_{S}$ and $Re\unicode[STIX]{x1D6EC}^{\unicode[STIX]{x1D6FC}_{u}^{eff}}$ agree with the predictions of the Grossmann–Lohse theory which was originally developed for the Rayleigh–Bénard flow. The non-dimensional salt-finger width and the thickness of the velocity boundary layers, after being rescaled by $\unicode[STIX]{x1D6EC}^{\unicode[STIX]{x1D6FC}_{u}^{eff}/2}$, collapse and obey a similar power-law scaling relation with $\mathit{Ra}_{S}$. When $\mathit{Ra}_{S}$ is large enough, salt fingers do not extend from one plate to the other and horizontal zonal flows emerge in the bulk region. We then show that the current scaling strategy can be successfully applied to the experimental results of a heat–copper–ion system (Hage & Tilgner, Phys. Fluids, vol. 22, 2010, 076603). The fluid has different properties and the exponent $\unicode[STIX]{x1D6FC}_{u}^{eff}$ takes a different value $0.54\pm 0.10$.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2001 Thermal convection for large Prandtl numbers. Phys. Rev. Lett. 86 (15), 33163319.CrossRefGoogle ScholarPubMed
Grossmann, S. & Lohse, D. 2002 Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection. Phys. Rev. E 66 (1), 016305.Google ScholarPubMed
Grossmann, S. & Lohse, D. 2004 Fluctuations in turbulent Rayleigh–Bénard convection: the role of plumes. Phys. Fluids 16 (12), 44624472.CrossRefGoogle Scholar
Hage, E. & Tilgner, A. 2010 High Rayleigh number convection with double diffusive fingers. Phys. Fluids 22 (7), 076603.CrossRefGoogle Scholar
Holyer, J. Y. 1981 On the collective instability of salt fingers. J. Fluid Mech. 110, 195207.CrossRefGoogle Scholar
Kellner, M. & Tilgner, A. 2014 Transition to finger convection in double-diffusive convection. Phys. Fluids 26 (9), 094103.CrossRefGoogle Scholar
Krishnamurti, R. 2003 Double-diffusive transport in laboratory thermohaline staircases. J. Fluid Mech. 483, 287314.CrossRefGoogle Scholar
Krishnamurti, R. 2009 Heat, salt and momentum transport in a laboratory thermohaline staircase. J. Fluid Mech. 638, 491506.CrossRefGoogle Scholar
Kunze, E. 2003 A review of oceanic salt-fingering theory. Prog. Oceanogr. 56, 399417.CrossRefGoogle Scholar
Linden, P. F. 1978 The formation of banded salt finger structure. J. Geophys. Res. Oceans 83 (C6), 29022912.CrossRefGoogle Scholar
McDougall, T. J. & Taylor, J. R. 1984 Flux measurements across a finger interface at low values of the stability ratio. J. Mar. Res. 42, 114.CrossRefGoogle Scholar
Ostilla-Mónico, R., Yang, Y., van der Poel, E. P., Lohse, D. & Verzicco, R. 2015 A multiple resolutions strategy for direct numerical simulation of scalar turbulence. J. Comput. Phys. 301, 308321.CrossRefGoogle Scholar
Radko, T. 2013 Double-Diffusive Convection. Cambridge University Press.CrossRefGoogle Scholar
Radko, T., Flanagan, J. D., Stellmach, S. & Timmermans, M.-L. 2014 Double-diffusive recipes. Part II. Layer-merging events. J. Phys. Oceanogr. 44, 12851305.CrossRefGoogle Scholar
Radko, T. & Smith, D. P. 2012 Equilibrium transport in double-diffusive convection. J. Fluid Mech. 692, 527.CrossRefGoogle Scholar
Schmitt, R. W. 1979 Flux measurements on salt fingers at an interface. J. Mar. Res. 37, 419436.Google Scholar
Schmitt, R. W. 1994 Double diffusion in oceanography. Annu. Rev. Fluid Mech. 26 (1), 255285.CrossRefGoogle Scholar
Schmitt, R. W. 2011 Thermohaline convection at density ratios below one: a new regime for salt fingers. J. Mar. Res. 69 (4–6), 779795.CrossRefGoogle Scholar
Schmitt, R. W., Ledwell, J. R., Montgomery, E. T., Polzin, K. L. & Toole, J. M. 2005 Enhanced diapycnal mixing by salt fingers in the thermocline of the tropical atlantic. Science 308 (5722), 685688.CrossRefGoogle ScholarPubMed
Shen, C. Y. 1993 Heatsalt finger fluxes across a density interface. Phys. Fluids A 5, 26332643.CrossRefGoogle Scholar
Stellmach, S., Traxler, A., Garaud, P., Brummell, N. & Radko, T. 2011 Dynamics of fingering convection. Part 2. The formation of thermohaline staircases. J. Fluid Mech. 677, 554571.CrossRefGoogle Scholar
Stern, M. E. 1969 Collective instability of salt fingers. J. Fluid Mech. 35, 209218.CrossRefGoogle Scholar
Stern, M. E., Radko, T. & Simeonov, J. 2001 Salt fingers in an unbounded thermocline. J. Mar. Res. 59, 355390.CrossRefGoogle Scholar
Stern, M. E. 1960 The salt-fountain and thermohaline convection. Tellus 12 (2), 172175.CrossRefGoogle Scholar
Stevens, R. J. A. M., van der Poel, E. P., Grossmann, S. & Lohse, D. 2013 The unifying theory of scaling in thermal convection: the updated prefactors. J. Fluid Mech. 730, 295308.CrossRefGoogle Scholar
Tait, R. I. & Howe, M. R. 1971 Thermohaline staircase. Nature 231, 178179.CrossRefGoogle ScholarPubMed
Taylor, J. & Bucens, P. 1989 Laboratory experiments on the structure of salt fingers. Deep Sea Res. 36 (11), 16751704.CrossRefGoogle Scholar
Traxler, A., Stellmach, S., Garaud, P., Radko, T. & Brummell, N. 2011 Dynamics of fingering convection. Part 1. Small-scale fluxes and large-scale instabilities. J. Fluid Mech. 677, 530553.CrossRefGoogle Scholar
Turner, J. S. 1967 Salt fingers across a density interface. Deep Sea Res. 14, 599611.Google Scholar
Yang, Y., van der Poel, E. P., Ostilla-Mónico, R., Sun, C., Verzicco, R., Grossmann, S. & Lohse, D. 2015 Salinity transfer in bounded double diffusive convection. J. Fluid Mech. 768, 476491.CrossRefGoogle Scholar
Yang, Y., Verzicco, R. & Lohse, D. 2016a From convection rolls to finger convection in double-diffusive turbulence. Proc. Natl Acad. Sci. USA 113 (1), 6973.CrossRefGoogle ScholarPubMed
Yang, Y., Verzicco, R. & Lohse, D.2016b Vertically bounded double diffusive convection in the fingering regime: comparing no-slip versus free-slip boundary conditions. Phys. Rev. Lett. (submitted) arXiv:1602.07718.Google Scholar
17
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Scaling laws and flow structures of double diffusive convection in the finger regime
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Scaling laws and flow structures of double diffusive convection in the finger regime
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Scaling laws and flow structures of double diffusive convection in the finger regime
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *