Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-21T03:59:28.036Z Has data issue: false hasContentIssue false

Double diffusive effects on pressure-driven miscible displacement flows in a channel

Published online by Cambridge University Press:  09 October 2012

Manoranjan Mishra
Department of Mathematics, Indian Institute of Technology Ropar, Rupnagar 140 001, Punjab, India
A. De Wit
Nonlinear Physical Chemistry Unit, Service de Chimie Physique et Biologie Théorique, Faculté des Sciences, Université Libre de Bruxelles (ULB), CP231, 1050 Brussels, Belgium
Kirti Chandra Sahu*
Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Yeddumailaram 502 205, Andhra Pradesh, India
Email address for correspondence:


The pressure-driven miscible displacement of a less viscous fluid by a more viscous one in a horizontal channel is studied. This is a classically stable system if the more viscous solution is the displacing one. However, we show by numerical simulations based on the finite-volume approach that, in this system, double diffusive effects can be destabilizing. Such effects can appear if the fluid consists of a solvent containing two solutes both influencing the viscosity of the solution and diffusing at different rates. The continuity and Navier–Stokes equations coupled to two convection–diffusion equations for the evolution of the solute concentrations are solved. The viscosity is assumed to depend on the concentrations of both solutes, while density contrast is neglected. The results demonstrate the development of various instability patterns of the miscible ‘interface’ separating the fluids provided the two solutes diffuse at different rates. The intensity of the instability increases when increasing the diffusivity ratio between the faster-diffusing and the slower-diffusing solutes. This brings about fluid mixing and accelerates the displacement of the fluid originally filling the channel. The effects of varying dimensionless parameters, such as the Reynolds number and Schmidt number, on the development of the ‘interfacial’ instability pattern are also studied. The double diffusive instability appears after the moment when the invading fluid penetrates inside the channel. This is attributed to the presence of inertia in the problem.

©2012 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Balasubramaniam, R., Rashidnia, N., Maxworthy, T. & Kuang, J. 2005 Instability of miscible interfaces in a cylindrical tube. Phys. Fluids 17, 052103.Google Scholar
Cao, Q., Ventresca, L., Sreenivas, K. R. & Prasad, A. K. 2003 Instability due to viscosity stratification downstream of a centreline injector. Can. J. Chem. Engng 81, 913.CrossRefGoogle Scholar
Chen, C.-Y. & Meiburg, E. 1996 Miscible displacement in capillary tubes. Part 2. Numerical simulations. J. Fluid Mech. 326, 5790.CrossRefGoogle Scholar
Chouke, R. L., Van Meurs, P. & Van Der Pol, C. 1959 The instability of slow, immiscible, viscous liquid–liquid displacements in permeable media. Trans. AIME 216, 188.CrossRefGoogle Scholar
Cox, B. G. 1962 On driving a viscous fluid out of a tube. J. Fluid Mech. 14, 81.Google Scholar
Curtiss, C. F. & Hirschfelder, J. O. 1949 Transport properties of multicomponent gas mixtures. J. Chem. Phys. 17, 550555.Google Scholar
Ding, H., Spelt, P. D. M. & Shu, C. 2007 Diffuse interface model for incompressible two-phase flows with large density ratios. J. Comput. Phys. 226, 20782095.CrossRefGoogle Scholar
d’Olce, M., Martin, J., Rakotomalala, N., Salin, D. & Talon, L. 2008 Pearl and mushroom instability patterns in two miscible fluids’ core annular flows. Phys. Fluids 20, 024104.CrossRefGoogle Scholar
Gabard, C. & Hulin, J.-P. 2003 Miscible displacement of non-Newtonian fluids in a vertical tube. Eur. Phys. J. E 11, 231.Google Scholar
Goyal, N., Pichler, H. & Meiburg, E. 2007 Variable-density miscible displacements in a vertical Hele-Shaw cell: linear stability. J. Fluid Mech. 584, 357372.Google Scholar
Hickox, C. E. 1971 Instability due to viscosity and density stratification in axisymmetric pipe flow. Phys. Fluids 14, 251.Google Scholar
Homsy, G. M. 1987 Viscous fingering in porous media. Annu. Rev. Fluid Mech. 19, 271311.Google Scholar
Hu, H. H. & Joseph, D. D. 1989 Lubricated pipelining: stability of core–annular flows. Part 2. J. Fluid Mech. 205, 395.CrossRefGoogle Scholar
Iglesias-Silva, G. A. & Hall, K. R. 2010 Equivalence of the McAllister and Heric equations for correlating the liquid viscosity of multicomponent mixtures. Ind. Engng Chem. Res. 49, 62506254.CrossRefGoogle Scholar
Joseph, D. D., Bai, R., Chen, K. P. & Renardy, Y. Y. 1997 Core–annular flows. Annu. Rev. Fluid Mech. 29, 65.Google Scholar
Joseph, D. D. & Renardy, Y. Y. 1992 Fundamentals of Two-Fluid Dynamics. Part II: Lubricated Transport, Drops and Miscible Liquids. Springer.Google Scholar
Kalidas, R. & Laddha, S. 1964 Viscosity of ternary liquid mixtures. J. Chem. Engng Data 9, 142145.Google Scholar
Kuang, J., Maxworthy, T. & Petitjeans, P. 2003 Miscible displacements between silicone oils in capillary tubes. Eur. J. Mech. 22, 271.Google Scholar
Lajeunesse, E., Martin, J., Rakotomalala, N. & Salin, D. 1997 3D instability of miscible displacements in a Hele-Shaw cell. Phys. Rev. Lett. 79, 5254.Google Scholar
Lajeunesse, E., Martin, J., Rakotomalala, N., Salin, D. & Yortsos, Y. C. 1999 Miscible displacement in a Hele-Shaw cell at high rates. J. Fluid Mech. 398, 299.Google Scholar
Manickam, O. & Homsy, G. M. 1993 Stability of miscible displacements in porous media with nonmonotonic viscosity profiles. Phys. Fluids 5, 13561367.Google Scholar
Mishra, M., Trevelyan, P. M. J., Almarcha, C. & De Wit, A. 2010 Influence of double diffusive effects on miscible viscous fingering. Phys. Rev. Lett 105, 204501.CrossRefGoogle ScholarPubMed
Petitjeans, P. & Maxworthy, T. 1996 Miscible displacements in capillary tubes. Part 1. Experiments. J. Fluid Mech. 326, 37.CrossRefGoogle Scholar
Pritchard, D. 2009 The linear stability of double-diffusive miscible rectilinear displacements in a Hele-Shaw cell. Eur. J. Mech. (B/Fluids) 28 (4), 564577.CrossRefGoogle Scholar
Probstein, R. F. 1994 Physicochemical Hydrodynamics. Wiley.Google Scholar
Ranganathan, B. T. & Govindarajan, R. 2001 Stabilisation and destabilisation of channel flow by location of viscosity-stratified fluid layer. Phys. Fluids 13 (1), 13.Google Scholar
Rashidnia, N., Balasubramaniam, R. & Schroer, R. T. 2004 The formation of spikes in the displacement of miscible fluids. Ann. N.Y. Acad. Sci. 1027, 311316.Google Scholar
Saffman, P. G. & Taylor, G. I. 1958 The penetration of a finger into a porous medium in a Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. A 245, 312329.Google Scholar
Sahu, K. C., Ding, H. & Matar, O. K. 2010 Numerical simulation of non-isothermal pressure-driven miscible channel flow with viscous heating. Chem. Engng Sci. 65, 32603267.Google Scholar
Sahu, K. C., Ding, H., Valluri, P. & Matar, O. K. 2009a Linear stability analysis and numerical simulation of miscible channel flows. Phys. Fluids 21, 042104.Google Scholar
Sahu, K. C., Ding, H., Valluri, P. & Matar, O. K. 2009b Pressure-driven miscible two-fluid channel flow with density gradients. Phys. Fluids 21, 043603.Google Scholar
Sahu, K. C. & Govindarajan, R. 2011 Linear stability of double-diffusive two-fluid channel flow. J. Fluid Mech. 687, 529539.CrossRefGoogle Scholar
Sahu, K. C. & Govindarajan, R. 2012 Spatio-temporal linear stability of double-diffusive two-fluid channel flow. Phys. Fluids 24, 054103.CrossRefGoogle Scholar
Sahu, K. C. & Matar, O. K. 2010 Three-dimensional linear instability in pressure-driven two-layer channel flow of a Newtonian and a Herschel–Bulkley fluid. Phys. Fluids 22, 112103.Google Scholar
Sahu, K. C. & Matar, O. K. 2011 Three-dimensional convective and absolute instabilities in pressure-driven two-layer channel flow. Intl J. Multiphase Flow 37, 987993.Google Scholar
Scoffoni, J., Lajeunesse, E. & Homsy, G. M. 2001 Interface instabilities during displacement of two miscible fluids in a vertical pipe. Phys. Fluids 13, 553.Google Scholar
Selvam, B., Merk, S., Govindarajan, R. & Meiburg, E. 2007 Stability of miscible core–annular flows with viscosity stratification. J. Fluid Mech. 592, 2349.Google Scholar
Tan, C. T. & Homsy, G. M. 1986 Stability of miscible displacements: rectilinear flow. Phys. Fluids 29, 73549.Google Scholar
Taylor, G. I. 1961 Deposition of viscous fluid on the wall of a tube. J. Fluid Mech. 10, 161.CrossRefGoogle Scholar
Yang, Z. & Yortsos, Y. C. 1997 Asymptotic solutions of miscible displacements in geometries of large aspect ratio. Phys. Fluids 9, 286298.CrossRefGoogle Scholar