Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-26T22:07:58.293Z Has data issue: false hasContentIssue false

Dynamics of viscoelastic pipe flow at low Reynolds numbers in the maximum drag reduction limit

Published online by Cambridge University Press:  12 July 2019

Jose M. Lopez*
Affiliation:
Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
George H. Choueiri
Affiliation:
Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
Björn Hof
Affiliation:
Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
*
Email address for correspondence: jlopez@ist.ac.at

Abstract

Polymer additives can substantially reduce the drag of turbulent flows and the upper limit, the so-called state of ‘maximum drag reduction’ (MDR), is to a good approximation independent of the type of polymer and solvent used. Until recently, the consensus was that, in this limit, flows are in a marginal state where only a minimal level of turbulence activity persists. Observations in direct numerical simulations at low Reynolds numbers ($Re$) using minimal sized channels appeared to support this view and reported long ‘hibernation’ periods where turbulence is marginalized. In simulations of pipe flow at $Re$ near transition we find that, indeed, with increasing Weissenberg number ($Wi$), turbulence expresses long periods of hibernation if the domain size is small. However, with increasing pipe length, the temporal hibernation continuously alters to spatio-temporal intermittency and here the flow consists of turbulent puffs surrounded by laminar flow. Moreover, upon an increase in $Wi$, the flow fully relaminarizes, in agreement with recent experiments. At even larger $Wi$, a different instability is encountered causing a drag increase towards MDR. Our findings hence link earlier minimal flow unit simulations with recent experiments and confirm that the addition of polymers initially suppresses Newtonian turbulence and leads to a reverse transition. The MDR state on the other hand results at these low$Re$ from a separate instability and the underlying dynamics corresponds to the recently proposed state of elasto-inertial turbulence.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barkley, D., Song, B., Mukund, V., Lemoult, G., Avila, M. & Hof, B. 2015 The rise of fully turbulent flow. Nature 526 (7574), 550553.Google Scholar
Benzi, R., De Angelis, E., L’vov, V. S., Procaccia, I. & Tiberkevich, V. 2006 Maximum drag reduction asymptotes and the cross-over to the newtonian plug. J. Fluid Mech. 551, 185195.Google Scholar
Beris, A. N. & Dimitropoulos, C. D. 1999 Pseudospectral simulation of turbulent viscoelastic channel flow. Comput. Meth. Appl. Mech. Engng 180 (3), 365392.Google Scholar
Bird, R., Dotson, P. & Johnson, N. 1980 Polymer solution rheology based on a finitely extensible beadspring chain model. J. Non-Newtonian Fluid Mech. 7 (2), 213235.Google Scholar
Choueiri, G. H., Lopez, J. M. & Hof, B. 2018 Exceeding the asymptotic limit of polymer drag reduction. Phys. Rev. Lett. 120, 124501.Google Scholar
Dubief, Y., Terrapon, V. E. & Soria, J. 2013 On the mechanism of elasto-inertial turbulence. Phys. Fluids 25 (11), 110817.Google Scholar
Elbing, B. R., Perlin, M., Dowling, D. R. & Ceccio, S. L. 2013 Modification of the mean near-wall velocity profile of a high-Reynolds number turbulent boundary layer with the injection of drag-reducing polymer solutions. Phys. Fluids 25 (8), 085103.Google Scholar
Giudice, F. D., Haward, S. J. & Shen, A. Q. 2017 Relaxation time of dilute polymer solutions: a microfluidic approach. J. Rheol. 61 (2), 327337.Google Scholar
Hof, B., de Lozar, A., Avila, M., Tu, X. & Schneider, T. M. 2010 Eliminating turbulence in spatially intermittent flows. Science 327 (5972), 14911494.Google Scholar
Li, C.-F., Sureshkumar, R. & Khomami, B. 2006 Influence of rheological parameters on polymer induced turbulent drag reduction. J. Non-Newtonian Fluid Mech. 140 (1), 2340; special issue on the XIVth International Workshop on Numerical Methods for Non-Newtonian Flows, Santa Fe, 2005.Google Scholar
Little, R. C. & Wiegard, M. 1970 Drag reduction and structural turbulence in flowing polyox solutions. J. Appl. Polym. Sci. 14 (2), 409419.Google Scholar
L’vov, V. S., Pomyalov, A., Procaccia, I. & Tiberkevich, V. 2004 Drag reduction by polymers in wall bounded turbulence. Phys. Rev. Lett. 92, 244503.Google Scholar
Orszag, S. A. & Patera, A. T. 1983 Secondary instability of wall-bounded shear flows. J.  Fluid Mech. 128, 347385.Google Scholar
Ptasinsky, P. K., Boersma, B. J., Nieuwstadt, F. T. M., Hulsen, M. A., Van den Brule, B. H. A. A. & Hunt, J. C. R. 2003 Turbulent channel flow near maximum drag reduction: simulations, experiments and mechanisms. J.  Fluid Mech. 490, 251291.Google Scholar
Ram, A. & Tamir, A. 1964 Structural turbulence in polymer solutions. J. Appl. Polym. Sci. 8 (6), 27512762.Google Scholar
Samanta, D., Dubief, Y., Holzner, M., Schäfer, C., Morozov, A. N., Wagner, C. & Hof, B. 2013 Elasto-inertial turbulence. Proc. Natl Acad. Sci. 110 (26), 1055710562.Google Scholar
Shekar, A., McMullen, R. M., Wang, S.-N., McKeon, B. J. & Graham, M. D. 2019 Critical-layer structures and mechanisms in elastoinertial turbulence. Phys. Rev. Lett. 122, 124503.Google Scholar
Shi, L., Rampp, M., Hof, B. & Avila, M. 2015 A hybrid mpi-openmp parallel implementation for pseudospectral simulations with application to taylorcouette flow. Comput. Fluids 106, 111.Google Scholar
Sid, S., Terrapon, V. E. & Dubief, Y. 2018 Two-dimensional dynamics of elasto-inertial turbulence and its role in polymer drag reduction. Phys. Rev. Fluids 3, 011301.Google Scholar
Sreenivasan, K. R. & White, C. M. 2000 The onset of drag reduction by dilute polymer additives, and the maximum drag reduction asymptote. J. Fluid Mech. 409, 149164.Google Scholar
Sureshkumar, R., Beris, A. N. & Handler, R. A. 1997 Direct numerical simulation of the turbulent channel flow of a polymer solution. Phys. Fluids 9 (3), 743755.Google Scholar
Toms, B. A. 1948 Some observation on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. In Proceedings of the 1st Intl. Congr. on Rheology, vol. II, pp. 135141. North Holland Publishing Company.Google Scholar
Virk, P., Mickley, H. & Smith, K. 1970 The ultimate asymptote and mean flow structure in Toms’ phenomenon. J. Appl. Mech. 37 (2), 488493.Google Scholar
Wang, S.-N., Shekar, A. & Graham, M. D. 2017 Spatiotemporal dynamics of viscoelastic turbulence in transitional channel flow. J. Non-Newtonian Fluid Mech. 244, 104122.Google Scholar
Warholic, M., Massah, H. & Hanratty, T. 1999 Influence of drag-reducing polymers on turbulence: effects of Reynolds number, concentration and mixing. Exp. Fluids 27 (5), 461472.Google Scholar
White, C. M., Dubief, Y. & Klewicki, J. 2012 Re-examining the logarithmic dependence of the mean velocity distribution in polymer drag reduced wall-bounded flow. Phys. Fluids 24 (2), 021701.Google Scholar
White, C. M., Dubief, Y. & Klewicki, J. 2018 Properties of the mean momentum balance in polymer drag-reduced channel flow. J. Fluid Mech. 834, 409433.Google Scholar
White, C. M. & Mungal, M. G. 2008 Mechanics and prediction of turbulent drag reduction with polymer additives. Annu. Rev. Fluid Mech. 40 (1), 235256.Google Scholar
Willis, A. P. 2017 The openpipeflow Navier–Stokes solver. SoftwareX 6, 124127.Google Scholar
Wygnanski, I. J. & Champagne, F. H. 1973 On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug. J. Fluid Mech. 59 (2), 281335.Google Scholar
Xi, L. & Graham, M. D. 2010a Active and hibernating turbulence in minimal channel flow of Newtonian and polymeric fluids. Phys. Rev. Lett. 104, 218301.Google Scholar
Xi, L. & Graham, M. D. 2010b Turbulent drag reduction and multistage transitions in viscoelastic minimal flow units. J.  Fluid Mech. 647, 421452.Google Scholar
Xi, L. & Graham, M. D. 2012a Dynamics on the laminar-turbulent boundary and the origin of the maximum drag reduction asymptote. Phys. Rev. Lett. 108, 028301.Google Scholar
Xi, L. & Graham, M. D. 2012b Intermittent dynamics of turbulence hibernation in Newtonian and viscoelastic minimal channel flows. J. Fluid Mech. 693, 433472.Google Scholar