Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-vkn6t Total loading time: 0.439 Render date: 2022-08-14T15:35:18.213Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Early-time free-surface flow driven by a deforming boundary

Published online by Cambridge University Press:  24 February 2015

C. Frederik Brasz*
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
Craig B. Arnold
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
Howard A. Stone
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
John R. Lister
Affiliation:
Institute of Theoretical Geophysics, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
*
Email address for correspondence: cfbrasz@gmail.com

Abstract

When a solid boundary deforms rapidly into a quiescent liquid layer, a flow is induced that can lead to jet formation. An asymptotic analytical solution is presented for this flow, driven by a solid boundary deforming with dimensionless vertical velocity $V_{b}(x,t)={\it\epsilon}(1+\cos x)\,f(t)$, where the amplitude ${\it\epsilon}$ is small relative to the wavelength and the time dependence $f(t)$ approaches 0 for large $t$. Initially, the flow is directed outwards from the crest of the deformation and slows with the slowing of the boundary motion. A domain-perturbation method is used to reveal that, when the boundary stops moving, nonlinear interactions with the free surface leave a remnant momentum directed back towards the crest, and this momentum can be a precursor to jet formation. This scenario arises in a laser-induced printing technique in which an expanding blister imparts momentum into a liquid film to form a jet. The analysis provides insight into the physics underlying the interaction between the deforming boundary and free surface, in particular, the dependence of the remnant flow on the thickness of the liquid layer and the deformation amplitude and wavelength. Numerical simulations are used to show the range of validity of the analytical results, and the domain-perturbation solution is extended to an axisymmetric domain with a Gaussian boundary deformation to compare with previous numerical simulations of blister-actuated laser-induced forward transfer.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antkowiak, A., Bremond, N., Le Dizes, S. & Villermaux, E. 2007 Short-term dynamics of a density interface following an impact. J. Fluid Mech. 577, 241250.CrossRefGoogle Scholar
Arnold, C. B., Serra, P. & Piqué, A. 2007 Laser direct-write techniques for printing of complex materials. MRS Bull. 32 (1), 2331.CrossRefGoogle Scholar
Blake, J. R. & Gibson, D. C. 1987 Cavitation bubbles near boundaries. Annu. Rev. Fluid Mech. 19, 99123.CrossRefGoogle Scholar
Bohandy, J., Kim, B. F. & Adrian, F. J. 1986 Metal-deposition from a supported metal-film using an excimer laser. J. Appl. Phys. 60 (4), 15381539.CrossRefGoogle Scholar
Boulton-Stone, J. M. & Blake, J. R. 1993 Gas bubbles bursting at a free surface. J. Fluid Mech. 254, 437466.CrossRefGoogle Scholar
Brasz, C. F., Yang, J. H. & Arnold, C. B. 2015 Tilting of adjacent laser-induced liquid jets. Microfluid Nanofluid 18 (2), 185197.CrossRefGoogle Scholar
Brown, M. S., Brasz, C. F., Ventikos, Y. & Arnold, C. B. 2012 Impulsively actuated jets from thin liquid films for high-resolution printing applications. J. Fluid Mech. 709, 341370.CrossRefGoogle Scholar
Brown, M. S., Kattamis, N. T. & Arnold, C. B. 2010 Time-resolved study of polyimide absorption layers for blister-actuated laser-induced forward transfer. J. Appl. Phys. 107 (8), 083103.CrossRefGoogle Scholar
Brown, M. S., Kattamis, N. T. & Arnold, C. B. 2011 Time-resolved dynamics of laser-induced micro-jets from thin liquid films. Microfluid. Nanofluid. 11 (2), 199207.CrossRefGoogle Scholar
Duchemin, L., Popinet, S., Josserand, C. & Zaleski, S. 2002 Jet formation in bubbles bursting at a free surface. Phys. Fluids 14 (9), 30003008.CrossRefGoogle Scholar
Duocastella, M., Fernández-Pradas, J. M., Morenza, J. L. & Serra, P. 2009 Time-resolved imaging of the laser forward transfer of liquids. J. Appl. Phys. 106 (8), 084907.CrossRefGoogle Scholar
van Dyke, M. 1964 Perturbation Methods in Fluid Mechanics. Academic.Google Scholar
Ferziger, J. H. & Perić, M. 2002 Computational Methods for Fluid Dynamics. Springer.CrossRefGoogle Scholar
Gekle, S., Gordillo, J. M., van der Meer, D. & Lohse, D. 2009 High-speed jet formation after solid object impact. Phys. Rev. Lett. 102 (3), 034502.CrossRefGoogle ScholarPubMed
Kattamis, N. T., McDaniel, N. D., Bernhard, S. & Arnold, C. B. 2009 Laser direct write printing of sensitive and robust light emitting organic molecules. Appl. Phys. Lett. 94 (10), 103306.CrossRefGoogle Scholar
Kattamis, N. T., McDaniel, N. D., Bernhard, S. & Arnold, C. B. 2011 Ambient laser direct-write printing of a patterned organo-metallic electroluminescent device. Org. Electron. 12 (7), 11521158.CrossRefGoogle Scholar
Kattamis, N. T., Purnick, P. E., Weiss, R. & Arnold, C. B. 2007 Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials. Appl. Phys. Lett. 91 (17), 171120.CrossRefGoogle Scholar
Koch, L., Deiwick, A., Schlie, S., Michael, S., Gruene, M., Coger, V., Zychlinski, D., Schambach, A., Reimers, K., Vogt, P. M. & Chichkov, B. 2012 Skin tissue generation by laser cell printing. Biotechnol. Bioengng 109 (7), 18551863.CrossRefGoogle ScholarPubMed
Kyrkis, K. D., Andreadaki, A. A., Papazoglou, D. G. & Zergioti, I. 2006 Recent Advances in Laser Processing of Materials, chap. 7, pp. 213241. Elsevier.Google Scholar
Palla-Papavlu, A., Paraico, I., Shaw-Stewart, J., Dinca, V., Savopol, T., Kovacs, E., Lippert, T., Wokaun, A. & Dinescu, M. 2011 Liposome micropatterning based on laser-induced forward transfer. Appl. Phys. A 102 (3), 651659.CrossRefGoogle Scholar
Patrascioiu, A., Fernández-Pradas, J., Palla-Papavlu, A., Morenza, J. & Serra, P. 2014 Laser-generated liquid microjets: correlation between bubble dynamics and liquid ejection. Microfluid. Nanofluid. 16 (1–2), 5563.CrossRefGoogle Scholar
Peters, I. R., Tagawa, Y., Oudalov, N., Sun, C., Prosperetti, A., Lohse, D. & van der Meer, D. 2013 Highly focused supersonic microjets: numerical simulations. J. Fluid Mech. 719, 587605.CrossRefGoogle Scholar
Ringeisen, B. R., Othon, C. M., Barron, J. A., Young, D. & Spargo, B. J. 2006 Jet-based methods to print living cells. Biotechnol. J. 1 (9), 930948.CrossRefGoogle ScholarPubMed
Schiele, N. R., Corr, D. T., Huang, Y., Raof, N. A., Xie, Y. & Chrisey, D. B. 2010 Laser-based direct-write techniques for cell printing. Biofabrication 2 (3), 032001.CrossRefGoogle ScholarPubMed
Shaw-Stewart, J. R. H., Mattle, T., Lippert, T. K., Nagel, M., Nüesch, F. A. & Wokaun, A. 2013 The fabrication of small molecule organic light-emitting diode pixels by laser-induced forward transfer. J. Appl. Phys. 113 (4), 043104.CrossRefGoogle Scholar
Tagawa, Y., Oudalov, N., Visser, C. W., Peters, I. R., van der Meer, D., Sun, C., Prosperetti, A. & Lohse, D. 2012 Highly focused supersonic microjets. Phys. Rev. X 2, 031002.Google Scholar
Tan, M. K., Friend, J. R. & Yeo, L. Y. 2009 Interfacial jetting phenomena induced by focused surface vibrations. Phys. Rev. Lett. 103 (2), 024501.CrossRefGoogle ScholarPubMed
Worthington, A. M. & Cole, R. S. 1897 Impact with a liquid surface, studied by the aid of instantaneous photography. Phil. Trans. R. Soc. Lond. A 189, 137148.CrossRefGoogle Scholar
Worthington, A. M. & Cole, R. S. 1900 Impact with a liquid surface studied by the aid of instantaneous photography, paper 2. Phil. Trans. R. Soc. Lond. A 194, 175199.CrossRefGoogle Scholar
Zeff, B. W., Kleber, B., Fineberg, J. & Lathrop, D. P. 2000 Singularity dynamics in curvature collapse and jet eruption on a fluid surface. Nature 403 (6768), 401404.CrossRefGoogle ScholarPubMed
Zergioti, I. 2013 Laser printing of organic electronics and sensors. J. Laser Micro/Nanoengng 8, 3034.CrossRefGoogle Scholar

Brasz et al. supplementary movie

Time evolution of the liquid layer and velocity field from an axisymmetric numerical simulation with ε=0.4 and β=0.4.

Download Brasz et al. supplementary movie(Video)
Video 4 MB

Brasz et al. supplementary movie

Time evolution of the liquid layer and velocity field from an axisymmetric numerical simulation with ε=0.4 and β=0.4.

Download Brasz et al. supplementary movie(Video)
Video 2 MB
18
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Early-time free-surface flow driven by a deforming boundary
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Early-time free-surface flow driven by a deforming boundary
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Early-time free-surface flow driven by a deforming boundary
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *