Hostname: page-component-cb9f654ff-kl2l2 Total loading time: 0 Render date: 2025-09-07T14:27:56.935Z Has data issue: false hasContentIssue false

Effects of thermal buoyancy on the dynamics of a rising or falling sphere

Published online by Cambridge University Press:  01 September 2025

Shuojin Li
Affiliation:
AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
Xinyu Jiang
Affiliation:
Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Turin 10129, Italy
Chun-Xiao Xu
Affiliation:
AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
Lihao Zhao*
Affiliation:
AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
*
Corresponding author: Lihao Zhao, zhaolihao@tsinghua.edu.cn

Abstract

This study investigates the effects of thermal buoyancy on the ascent or descent dynamics and path instabilities of a finite-size sphere through direct numerical simulations with the immersed boundary method. By parametrically varying the density ratio $(\rho _r)$, Richardson number $({\textit{Ri}})$ and Galileo number $(\textit{Ga})$, four distinct motion regimes are identified: stable vertical, zigzagging, spiralling and chaotic regimes. These regimes emerge from the competition between particle inertial, gravitational forces and fluid thermal-buoyant forces. Compared with isothermal cases, particles with positive Richardson numbers exhibit accelerated motion due to thermal buoyancy. The critical Reynolds numbers ${\textit{Re}}_{p,cr}$ for their path instability are significantly reduced by amplifying wake recirculation zones and triggering vortex shedding. This destabilization mechanism is markedly more pronounced for light particles $(\rho _r \lt 1)$ than heavy particles $(\rho _r \gt 1)$. The present results reveal that the dynamics of heated light particles $(\rho _r=0.5, {\textit{Ri}}\gt 0)$ are governed by the codependent interplay of thermal-buoyancy intensity (${\textit{Ri}}$) and gravitational force (${\textit{Ga}}$), which collectively dictate velocity modulation and path instability patterns. Notably, thermal buoyancy elevates particle Reynolds numbers $({\textit{Re}}_p)$ while could reduce Nusselt numbers, arising from competing mechanisms between intensified convective transport and impaired conductive heat transfer – particularly pronounced for low ${\textit{Ga}}$ particles. These findings bridge the gap between fundamental fluid mechanics and thermal engineering, offering insights to optimize thermal management in particle-laden flows systems, such as industrial heat exchangers and fluidized bed reactors, where thermohydrodynamic coupling effect plays a key role in the performance.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Auguste, F. & Magnaudet, J. 2018 Path oscillations and enhanced drag of light rising spheres. J. Fluid Mech. 841, 228266.10.1017/jfm.2018.100CrossRefGoogle Scholar
Bagchi, P., Ha, M.Y. & Balachandar, S. 2001 Direct numerical simulation of flow and heat transfer from a sphere in a uniform cross-flow. J. Fluids Eng. 123 (2), 347358.10.1115/1.1358844CrossRefGoogle Scholar
Bonnefis, P., Sierra-Ausin, J., Fabre, D. & Magnaudet, J. 2024 Path instability of deformable bubbles rising in Newtonian liquids: a linear study. J. Fluid Mech. 980, A19.10.1017/jfm.2024.19CrossRefGoogle Scholar
Bouchet, G., Mebarek, M. & Dušek, J. 2006 Hydrodynamic forces acting on a rigid fixed sphere in early transitional regimes. Eur. J. Mech. B Fluids 25 (3), 321336.10.1016/j.euromechflu.2005.10.001CrossRefGoogle Scholar
Breugem, W.P. 2012 A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows. J. Comput. Phys. 231 (13), 44694498.10.1016/j.jcp.2012.02.026CrossRefGoogle Scholar
Chouippe, A., Krayer, M., Uhlmann, M., Dušek, J., Kiselev, A. & Leisner, T. 2019 Heat and water vapor transfer in the wake of a falling ice sphere and its implication for secondary ice formation in clouds. New J. Phys. 21 (4), 043043.10.1088/1367-2630/ab0a94CrossRefGoogle Scholar
Dan, C. & Wachs, A. 2010 Direct numerical simulation of particulate flow with heat transfer. Int. J. Heat Fluid Flow 31 (6), 10501057.10.1016/j.ijheatfluidflow.2010.07.007CrossRefGoogle Scholar
Doostmohammadi, A., Dabiri, S. & Ardekani, A.M. 2014 A numerical study of the dynamics of a particle settling at moderate Reynolds numbers in a linearly stratified fluid. J. Fluid Mech. 750, 532.10.1017/jfm.2014.243CrossRefGoogle Scholar
Ern, P., Risso, F., Fabre, D. & Magnaudet, J. 2012 Wake-induced oscillatory paths of bodies freely rising or falling in fluids. Annu. Rev. Fluid Mech. 44 (1), 97121.10.1146/annurev-fluid-120710-101250CrossRefGoogle Scholar
Eshghinejadfard, A., Abdelsamie, A., Janiga, G. & Thévenin, D. 2016 Direct-forcing immersed boundary lattice Boltzmann simulation of particle/fluid interactions for spherical and non-spherical particles. Particuology 25, 93103.10.1016/j.partic.2015.05.004CrossRefGoogle Scholar
Fan, P., Lin, Z., Xu, J. & Yu, Z. 2023 A three-dimensional fictitious domain method for direct numerical simulations of particle-laden flows with heat transfer. Phys. Fluids 35 (6), 063324.10.1063/5.0151249CrossRefGoogle Scholar
Feng, Z.G. & Michaelides, E.E. 2000 A numerical study on the transient heat transfer from a sphere at high Reynolds and Peclet numbers. Int. J. Heat Mass Transfer 43 (2), 219229.10.1016/S0017-9310(99)00133-7CrossRefGoogle Scholar
Feng, Z.G. & Musong, S.G. 2014 Direct numerical simulation of heat and mass transfer of spheres in a fluidized bed. Powder Technol. 262, 6270.10.1016/j.powtec.2014.04.019CrossRefGoogle Scholar
Fitzgibbon, A., Pilu, M. & Fisher, R.B. 1999 Direct least square fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 21 (5), 476480.10.1109/34.765658CrossRefGoogle Scholar
Gan, H., Chang, J., Feng, J.J. & Hu, H.H. 2003 Direct numerical simulation of the sedimentation of solid particles with thermal convection. J. Fluid Mech. 481, 385411.10.1017/S0022112003003938CrossRefGoogle Scholar
Grabowski, W.W. & Wang, L.P. 2013 Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech. 45, 293324.10.1146/annurev-fluid-011212-140750CrossRefGoogle Scholar
Horowitz, M. & Williamson, C.H.K. 2010 The effect of Reynolds number on the dynamics and wakes of freely rising and falling spheres. J. Fluid Mech. 651, 251294.10.1017/S0022112009993934CrossRefGoogle Scholar
Jenny, M., Dušek, J. & Bouchet, G. 2004 Instabilities and transition of a sphere falling or ascending freely in a Newtonian fluid. J. Fluid Mech. 508, 201239.10.1017/S0022112004009164CrossRefGoogle Scholar
Jiang, X., Huang, W., Xu, C. & Zhao, L. 2024 a A flow-reconstruction based approach for the computation of hydrodynamic stresses on immersed body surface. J. Comput. Phys. 508, 113025.10.1016/j.jcp.2024.113025CrossRefGoogle Scholar
Jiang, X., Xu, C. & Zhao, L. 2024 b Prolate spheroids settling in a quiescent fluid: clustering, microstructures and collisions. J. Fluid Mech. 1000, A49.10.1017/jfm.2024.1046CrossRefGoogle Scholar
Kim, K., Baek, S.J. & Sung, H.J. 2002 An implicit velocity decoupling procedure for the incompressible Navier–Stokes equations. Int. J. Numer. Meth. Fluid. 38 (2), 125138.10.1002/fld.205CrossRefGoogle Scholar
Kishore, N. & Gu, S. 2011 Momentum and heat transfer phenomena of spheroid particles at moderate Reynolds and Prandtl numbers. Int. J. Heat Mass Transfer 54 (11–12), 25952601.10.1016/j.ijheatmasstransfer.2011.02.001CrossRefGoogle Scholar
Kiwitt, T., Fröhlich, K., Meinke, M. & Schröder, W. 2022 Nusselt correlation for ellipsoidal particles. Int. J. Multiphase Flow 149, 103941.10.1016/j.ijmultiphaseflow.2021.103941CrossRefGoogle Scholar
Kotouč, M., Bouchet, G. & Dušek, J. 2008 Loss of axisymmetry in flow past a heated sphere-assisting flow. Int. J. Heat Mass Transfer 51, 26862700.10.1016/j.ijheatmasstransfer.2007.10.005CrossRefGoogle Scholar
Kotouč, M., Bouchet, G. & Dušek, J. 2009 Transition to turbulence in the wake of a fixed sphere in mixed convection. J. Fluid Mech. 625, 205248.10.1017/S0022112008005557CrossRefGoogle Scholar
Magnaudet, J. & Mougin, G. 2007 Wake instability of a fixed spheroidal bubble. J. Fluid Mech. 572, 311337.10.1017/S0022112006003442CrossRefGoogle Scholar
Majlesara, M., Abouali, O., Kamali, R., Ardekani, M.N. & Brandt, L. 2020 Numerical study of hot and cold spheroidal particles in a viscous fluid. Intl J. Heat Mass Transfer 149, 119206.10.1016/j.ijheatmasstransfer.2019.119206CrossRefGoogle Scholar
Mickley, H.S. & Fairbanks, D.F. 1955 Mechanism of heat transfer to fluidized beds. AIChE J. 1 (3), 374384.10.1002/aic.690010317CrossRefGoogle Scholar
Newton, I. 1687 The Principia: Mathematical Principles of Natural Philosophy (Transl. I.B. Cohen & A. Whitman) 1999, vol. 2. University of California Press.Google Scholar
Pan, X., Kim, K.H. & Choi, J.I. 2019 Efficient monolithic projection method with staggered time discretization for natural convection problems. Int. J. Heat Mass Transfer 144, 118677.10.1016/j.ijheatmasstransfer.2019.118677CrossRefGoogle Scholar
Raaghav, S.K., Poelma, C. & Breugem, W.P. 2022 Path instabilities of a freely rising or falling sphere. Int. J. Multiphase Flow 153, 104111.Google Scholar
Rans, W.E. & Marshall, W.R. 1952 Evaporation from drops. Chem. Eng. Process 48, 141146.Google Scholar
Schwarz, S., Kempe, T. & Fröhlich, J. 2015 A temporal discretization scheme to compute the motion of light particles in viscous flows by an immersed boundary method. J. Comput. Phys. 281, 591613.10.1016/j.jcp.2014.10.039CrossRefGoogle Scholar
Shao, X., Shi, Y. & Yu, Z. 2012 Combination of the fictitious domain method and the sharp interface method for direct numerical simulation of particulate flows with heat transfer. Int. J. Heat Mass Transfer 55 (23–24), 67756785.10.1016/j.ijheatmasstransfer.2012.06.085CrossRefGoogle Scholar
Tavassoli, H., Kriebitzsch, S.H.L., Van der Hoef, M.A., Peters, E.A.J.F. & Kuipers, J.A.M. 2013 Direct numerical simulation of particulate flow with heat transfer. Int. J. Multiphase Flow 57, 2937.10.1016/j.ijmultiphaseflow.2013.06.009CrossRefGoogle Scholar
Tschisgale, S., Kempe, T. & Fröhlich, J. 2017 A non-iterative immersed boundary method for spherical particles of arbitrary density ratio. J. Comput. Phys. 339, 432452.10.1016/j.jcp.2017.03.026CrossRefGoogle Scholar
Uhlmann, M. 2005 An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209 (2), 448476.CrossRefGoogle Scholar
Veldhuis, C., Biesheuvel, A., Van Wijngaarden, L. & Lohse, D. 2004 Motion and wake structure of spherical particles. Nonlinearity 18 (1), C1.10.1088/0951-7715/18/1/000CrossRefGoogle Scholar
Veldhuis, C.H.J. & Biesheuvel, A. 2007 An experimental study of the regimes of motion of spheres falling or ascending freely in a Newtonian fluid. Int. J. Multiphase Flow 33 (10), 10741087.10.1016/j.ijmultiphaseflow.2007.05.002CrossRefGoogle Scholar
Wachs, A. 2011 Rising of 3D catalyst particles in a natural convection dominated flow by a parallel DNS method. Comput. Chem. Eng. 35 (11), 21692185.10.1016/j.compchemeng.2011.02.013CrossRefGoogle Scholar
Whitaker, S. 1972 Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles. AIChE J. 18 (2), 361371.10.1002/aic.690180219CrossRefGoogle Scholar
Will, J.B. & Krug, D. 2021 Rising and sinking in resonance: mass distribution critically affects buoyancy-driven spheres via rotational dynamics. Phys. Rev. Lett. 126 (17), 174502.10.1103/PhysRevLett.126.174502CrossRefGoogle ScholarPubMed
Xu, A., Shi, L. & Xi, H.D. 2019 Lattice Boltzmann simulations of three-dimensional thermal convective flows at high Rayleigh number. Int. J. Heat Mass Transfer 140, 359370.10.1016/j.ijheatmasstransfer.2019.06.002CrossRefGoogle Scholar
Xu, T. & Choi, J.I. 2023 Stable monolithic immersed boundary projection method for particle sedimentation with heat transfer at density ratios near unity. Phys. Fluids 35 (10), 103615.10.1063/5.0172741CrossRefGoogle Scholar
Yang, B., Chen, S., Cao, C., Liu, Z. & Zheng, C. 2016 Lattice Boltzmann simulation of two cold particles settling in Newtonian fluid with thermal convection. Int. J. Heat Mass Transfer 93, 477490.10.1016/j.ijheatmasstransfer.2015.10.030CrossRefGoogle Scholar
Yu, Z., Shao, X. & Wachs, A. 2006 A fictitious domain method for particulate flows with heat transfer. J. Comput. Phys. 217 (2), 424452.Google Scholar
Zamansky, R., Coletti, F., Massot, F. & Mani, A. 2014 Radiation induces turbulence in particle-laden fluids. Phys. Fluids 26 (7), 071701.10.1063/1.4890296CrossRefGoogle Scholar
Zhong, W., Yu, A., Liu, X., Tong, Z. & Zhang, H. 2016 DEM/CFD-DEM modelling of non-spherical particulate systems: theoretical developments and applications. Powder Technol. 302, 108152.10.1016/j.powtec.2016.07.010CrossRefGoogle Scholar
Zhou, W. & Dušek, J. 2015 Chaotic states and order in the chaos of the paths of freely falling and ascending spheres. Int. J. Multiphase Flow 75, 205223.10.1016/j.ijmultiphaseflow.2015.05.010CrossRefGoogle Scholar