Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-30T03:35:06.325Z Has data issue: false hasContentIssue false

Electromagnetically driven flow of electrolyte in a thin annular layer: axisymmetric solutions

Published online by Cambridge University Press:  05 September 2017

Sergey A. Suslov*
Affiliation:
Department of Mathematics, H38, Swinburne University of Technology, John Street, Hawthorn, Victoria 3122, Australia
James Pérez-Barrera
Affiliation:
Instituto de Energías Renovables, Universidad Nacional Autónoma de México, A.P. 34, Temixco, Morelos 62580, México
Sergio Cuevas
Affiliation:
Instituto de Energías Renovables, Universidad Nacional Autónoma de México, A.P. 34, Temixco, Morelos 62580, México
*
Email address for correspondence: ssuslov@swin.edu.au

Abstract

Experimental observations of an azimuthal electrolyte flow driven by Lorentz force in a thin annular fluid layer placed on top of a magnet show that it develops a robust vortical system near the outer cylindrical wall. It appears to be a result of instabilities developing on a background of steady axisymmetric flow. Therefore, the goal of this paper is to establish a scene for a future comprehensive stability analysis of such a flow. We discuss popular depth-averaged and quasi-two-dimensional approximate solutions that take advantage of the thin-layer assumption first, and argue that they cannot lead to the observed flow patterns. Thus, three-dimensional toroidal flows are considered. Their similarities to various other well-studied rotating flow configurations are outlined, but no close match is found. Multiple axisymmetric solutions are detected numerically for the same governing parameters, indicating the possibility of subcritical bifurcations, namely type 1, consisting of a single torus, and type 2, developing a second counter-rotating toroidal flow near the outer cylinder. It is suggested that the transition between these two axisymmetric solutions is likely to be caused by the centrifugal instability, while the shear-type instability of the type 2 solution may be responsible for the observed vortex structures. However, a dedicated stability analysis which is currently underway and will be reported in a separate publication is required to confirm these hypotheses.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahamson, S. D., Eaton, J. K. & Koga, D. J. 1989 The flow between shrouded corotating disks. Phys. Fluids A 1 (2), 241251.Google Scholar
Andreev, O., Heberstroh, Ch. & Thess, A. 2001 MHD flow in electrolytes at high Hartmann numbers. Magnetohydrodynamics 37 (1–2), 151160.Google Scholar
Balbus, S. A. & Hawley, J. F. 1991 A powerful local shear instability in weakly magnetized disks. I. Linear analysis. Astrophys. J. 376, 214222.CrossRefGoogle Scholar
Bödewadt, U. T. 1940 Die Drehströmung uber festem Grund. Z. Angew. Math. Mech. 20, 241253.CrossRefGoogle Scholar
Bondarenko, N. F., Gak, E. Z. & Gak, M. Z. 2002 Application of MHD effects in electrolytes for modeling vortex processes in natural phenomena and in solving engineering-physical problems. J. Engng Phys. Thermophys. 75 (1), 12341247.Google Scholar
Davidson, P. A. 2001 An Introduction to Magneto-Hydrodynamics. Cambridge University Press.Google Scholar
Davidson, P. A. & Pothérat, A. 2002 A note on Bödewadt–Hartmann layers. Eur. J. Mech. (B/Fluids) 21, 545559.CrossRefGoogle Scholar
Delacroix, J. & Davoust, L. 2014 Electrical activity of the Hartmann layers relative to surface viscous shearing in an annular magnetohydrodynamic flow. Phys. Fluids 26, 037102.Google Scholar
Digilov, R. M. 2007 Making a fluid rotate: circular flow of a weakly conducting fluid induced by Lorentz force. Am. J. Phys. 75 (4), 361367.Google Scholar
Dolzhanskii, F. V., Krymov, V. A. & Manin, D. Yu. 1990 Stability and vortex structures of quasi-two-dimensional shear flows. Sov. Phys. Uspekhi 33 (7), 495520.Google Scholar
Dolzhanskii, F. V., Krymov, V. A. & Manin, D. Yu. 1992 An advanced experimental investigation of quasi-two-dimensional shear flows. J. Fluid Mech. 241, 705722.Google Scholar
Dovzhenko, V. A., Krymov, V. A. & Ponomarev, V. M. 1984 Experimental and theoretical study of a shear flow driven by an axisymmetric force. Izv. Akad. Nauk SSSR Fiz. Atm. Okeana (in Russian) 20 (8), 693704.Google Scholar
Dovzhenko, V. A., Novikov, Yu. A. & Obukhov, A. M. 1979 Modelling of the process of generation of vortices in an axisymmetric azimuthal field using a magnetohydrodynamic method. Izv. Akad. Nauk SSSR Fiz. Atm. Okeana (in Russian) 15 (11), 11991202.Google Scholar
Dovzhenko, V. A., Obukhov, A. M. & Ponomarev, V. M. 1981 Generation of vortices in an axisymmetric shear flow. Fluid Dyn. 16 (4), 510518.CrossRefGoogle Scholar
Drazin, P. & Reid, W. 1981 Hydrodynamic Stability. Cambridge University Press.Google Scholar
Ekman, V. W. 1905 On the influence of the Earth’s rotation on ocean currents. Arkiv. Mat. Ast. Fys. 2 (11), 152.Google Scholar
Faller, A. J. 1963 An experimental study of the instability of the laminar Ekman boundary layer. J. Fluid Mech. 15, 560576.Google Scholar
Faller, A. J. 1991 Instability and transition of disturbed flow over a rotating disk. J. Fluid Mech. 236, 245269.Google Scholar
González Vera, A. S. & Zavala Sansón, L. 2015 The evolution of a continuously forced shear flow in a closed rectangular domain. Phys. Fluids 27, 034106.Google Scholar
Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.Google Scholar
Hatziavramidis, D. & Ku, H.-C. 1985 An integral Chebyshev expansion method for boundary-value problems of O.D.E. type. Comput. Math. Appl. 11 (6), 581586.Google Scholar
Hide, R. & Titman, C. W. 1967 Detached shear layers in a rotating fluid. J. Fluid Mech. 29 (1), 3960.Google Scholar
Kenjeres, S. 2011 Electromagnetically driven dwarf tornados in turbulent convection. Phys. Fluids 23, 015103.Google Scholar
Krymov, V. A. 1989 Stability and supercritical regimes of quasi-two-dimensional shear flow in the presence of external friction (experiment). Fluid Dyn. 24 (2), 170176.Google Scholar
Ku, H.-C. & Hatziavramidis, D. 1984 Chebyshev expansion methods for the solution of the extended Graetz problem. J. Comput. Phys. 56, 495512.Google Scholar
Lilly, D. K. 1966 On the instability of Ekman boundary layer. J. Atmos. Sci. 23, 481494.Google Scholar
Lopez, J. M., Hart, J. E., Marques, F., Kittelman, S. & Shen, J. 2002 Instability and mode interactions in a differentially driven rotating cylinder. J. Fluid Mech. 462, 383409.Google Scholar
MacKerrell, S. O. 2005 Stability of Bödewadt flow. Phil. Trans. R. Soc. Lond. A 363, 11811187.Google Scholar
Manin, D. Yu. 1989 Stability and supercritical regimes of quasi-two-dimensional shear flow in the presence of external friction (theory). Fluid Dyn. 24 (2), 177183.CrossRefGoogle Scholar
Moisy, F., Doaré, O., Pasutto, T., Daube, O. & Rabaud, M. 2004 Experimental and numerical study of the shear layer instability between two counter-rotating disks. J. Fluid Mech. 507, 175202.Google Scholar
Pérez-Barrera, J., Ortiz, A. & Cuevas, S. 2016 Analysis of an annular MHD stirrer for microfluidic applications. In Recent Advances in Fluid Dynamcis with Environmental Applications (ed. Klapp, J., Sigalotti, L. D. G., Medina Ovando, A., López Villa, A. & Ruíz Chavarría, G.), pp. 275288. Springer.Google Scholar
Pérez-Barrera, J., Pérez-Espinoza, J. E., Ortiz, A., Ramos, E. & Cuevas, S. 2015 Instability of electrolyte flow driven by an azimuthal Lorentz force. Magnetohydrodynamics 51 (2), 203213.CrossRefGoogle Scholar
Rayleigh, Lord 1916 On the dynamics of revolving fluids. Proc. R. Soc. Lond. 93, 148154.Google Scholar
Satijn, M. P., Cense, A. W., Verzicco, R., Clercx, H. J. H. & van Heijst, G. J. F. 2001 Three-dimensional structure and decay properties of vortices in shallow fluid layers. Phys. Fluids 13 (7), 19311945.Google Scholar
Savaş, Ö. 1987 Stability of Bödewadt flow. J. Fluid Mech. 183, 7794.Google Scholar
Schaeffer, N. & Cardin, P. 2005 Quasigeostrophic model of the instabilities of the Stewartson layer in flat and depth-varying containers. Phys. Fluids 17, 104111.Google Scholar
Sommeria, J. 1988 Electrically driven vortices in a strong magnetic field. J. Fluid Mech. 189, 553569.Google Scholar
Stewartson, K. 1957 On almost rigid rotations. J. Fluid Mech. 3, 1726.Google Scholar
Suslov, S. A. & Cuevas, S. 2017 Numerical modelling of axisymmetric electromagnetically driven flows in thin layers. ANZIAM J. 58, C46C56.Google Scholar
Suslov, S. A. & Paolucci, S. 1995a Stability of mixed-convection flow in a tall vertical channel under non-Boussinesq conditions. J. Fluid Mech. 302, 91115.Google Scholar
Suslov, S. A. & Paolucci, S. 1995b Stability of natural convection flow in a tall vertical enclosure under non-Boussinesq conditions. Intl J. Heat Mass Transfer 38, 21432157.Google Scholar
Velikhov, E. P. 1959 Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field. Sov. Phys. JETP 36 (9), 995998.Google Scholar
Vogt, T., Grants, I., Eckert, S. & Gerbeth, G. 2013 Spin-up of a magnetically driven tornado-like vortex. J. Fluid Mech. 736, 641662.Google Scholar