Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-jcwnq Total loading time: 0.179 Render date: 2021-10-23T09:30:24.734Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

The energy flux spectrum of internal waves generated by turbulent convection

Published online by Cambridge University Press:  10 September 2018

Louis-Alexandre Couston*
Affiliation:
CNRS, Aix Marseille Univ, Centrale Marseille, IRPHE, Marseille, France
Daniel Lecoanet
Affiliation:
Princeton Center for Theoretical Science, Princeton, NJ 08544, USA
Benjamin Favier
Affiliation:
CNRS, Aix Marseille Univ, Centrale Marseille, IRPHE, Marseille, France
Michael Le Bars
Affiliation:
CNRS, Aix Marseille Univ, Centrale Marseille, IRPHE, Marseille, France
*
Email address for correspondence: louisalexandre.couston@gmail.com

Abstract

We present three-dimensional direct numerical simulations of internal waves excited by turbulent convection in a self-consistent, Boussinesq and Cartesian model of mixed convective and stably stratified fluids. We demonstrate that in the limit of large Rayleigh number ($Ra\in [4\times 10^{7},10^{9}]$) and large stratification (Brunt–Väisälä frequencies $f_{N}\gg f_{c}$, where $f_{c}$ is the convective frequency), simulations are in good agreement with a theory that assumes waves are generated by Reynolds stresses due to eddies in the turbulent region as described in Lecoanet & Quataert (Mon. Not. R. Astron. Soc., vol. 430 (3), 2013, pp. 2363–2376). Specifically, we demonstrate that the wave energy flux spectrum scales like $k_{\bot }^{4}\,f^{-13/2}$ for weakly damped waves (with $k_{\bot }$ and $f$ the waves’ horizontal wavenumbers and frequencies, respectively), and that the total wave energy flux decays with $z$, the distance from the convective region, like $z^{-13/8}$.

Type
JFM Rapids
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, M. J., Geller, M., McLandress, C., Polavarapu, S., Preusse, P., Sassi, F., Sato, K., Eckermann, S., Ern, M., Hertzog, A., Kawatani, Y., Pulido, M., Shaw, T. A., Sigmond, M., Vincent, R. & Watanabe, S. 2010 Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Q. J. R. Meteorol. Soc. 136 (650), 11031124.Google Scholar
Ansong, J. K. & Sutherland, B. R. 2010 Internal gravity waves generated by convective plumes. J. Fluid Mech. 648, 405.CrossRefGoogle Scholar
Bordes, G., Venaille, A., Joubaud, S., Odier, P. & Dauxois, T. 2012 Experimental observation of a strong mean flow induced by internal gravity waves. Phys. Fluids 24 (8), 086602.CrossRefGoogle Scholar
van den Bremer, T. S. & Sutherland, B. R. 2018 The wave-induced flow of internal gravity wavepackets with arbitrary aspect ratio. J. Fluid Mech. 834, 385408.CrossRefGoogle Scholar
Burns, K. J., Vasil, G. M., Oishi, J. S., Lecoanet, D. & Brown, B. P. 2018 Dedalus: Flexible Framework for Spectrally Solving Differential Equations. Astrophysics Source Code Library.Google Scholar
Canet, L., Rossetto, V., Wschebor, N. & Balarac, G. 2017 Spatiotemporal velocity–velocity correlation function in fully developed turbulence. Phys. Rev. E 95, 023107.Google ScholarPubMed
Carruthers, D. J. & Hunt, J. C. R. 1986 Velocity fluctuations near an interface between a turbulent region and a stably stratified layer. J. Fluid Mech. 165, 475501.CrossRefGoogle Scholar
Chen, S. & Kraichnan, R. H. 1989 Sweeping decorrelation in isotropic turbulence. Phys. Fluids A 1 (12), 20192024.CrossRefGoogle Scholar
Chevillard, L., Roux, S. G., Lévêque, E., Mordant, N., Pinton, J.-F. & Arnéodo, A. 2005 Intermittency of velocity time increments in turbulence. Phys. Rev. Lett. 95, 064501.CrossRefGoogle ScholarPubMed
Couston, L.-A., Lecoanet, D., Favier, B. & Le Bars, M. 2017 Dynamics of mixed convective–stably-stratified fluids. Phys. Rev. Fluids 2, 094804.CrossRefGoogle Scholar
Couston, L.-A., Lecoanet, D., Favier, B. & Le Bars, M. 2018 Order out of chaos: slowly reversing mean flows emerge from turbulently generated internal waves. Phys. Rev. Lett. 120, 244505.CrossRefGoogle ScholarPubMed
Favier, B., Godeferd, F. S. & Cambon, C. 2010 On space and time correlations of isotropic and rotating turbulence. Phys. Fluids 22 (1), 015101.CrossRefGoogle Scholar
Garaud, P. 2018 Double-diffusive convection at low Prandtl number. Annu. Rev. Fluid Mech. 50 (1), 275298.CrossRefGoogle Scholar
Goldreich, P. & Kumar, P. 1990 Wave generation by turbulent convection. Astrophys. J. 363, 694704.CrossRefGoogle Scholar
Grisouard, N. & Bühler, O. 2012 Forcing of oceanic mean flows by dissipating internal tides. J. Fluid Mech. 708, 250278.CrossRefGoogle Scholar
Kunze, E. 2017 Internal-wave-driven mixing: global geography and budgets. J. Phys. Oceanogr. 47 (6), 13251345.CrossRefGoogle Scholar
Lecoanet, D., Le Bars, M., Burns, K. J., Vasil, G. M., Brown, B. P., Quataert, E. & Oishi, J. S. 2015 Numerical simulations of internal wave generation by convection in water. Phys. Rev. E 91 (6), 063016.CrossRefGoogle ScholarPubMed
Lecoanet, D. & Quataert, E. 2013 Internal gravity wave excitation by turbulent convection. Mon. Not. R. Astron. Soc. 430 (3), 23632376.CrossRefGoogle Scholar
Liot, O., Seychelles, F., Zonta, F., Chibbaro, S., Coudarchet, T., Gasteuil, Y., Pinton, J.-F., Salort, J. & Chillà, F. 2016 Simultaneous temperature and velocity Lagrangian measurements in turbulent thermal convection. J. Fluid Mech. 794, 655675.CrossRefGoogle Scholar
Munroe, J. R. & Sutherland, B. R. 2014 Internal wave energy radiated from a turbulent mixed layer. Phys. Fluids 26 (9), 096604.CrossRefGoogle Scholar
Pinçon, C., Belkacem, K. & Goupil, M. J. 2016 Generation of internal gravity waves by penetrative convection. Astron. Astrophys. 588 (A122), 121.CrossRefGoogle Scholar
Rogers, T. M., Lin, D. N. C. & Lau, H. H. B. 2012 Internal gravity waves modulate the apparent misalignment of exoplanets around hot stars. Astrophys. J. Lett. 758 (1), L6.CrossRefGoogle Scholar
Rogers, T. M., Lin, D. N. C., McElwaine, J. N. & Lau, H. H. B. 2013 Internal gravity waves in massive stars: angular momentum transport. Astrophys. J. 772 (1), 21.CrossRefGoogle Scholar
Sano, M., Wu, X. Z. & Libchaber, A. 1989 Turbulence in helium-gas free convection. Phys. Rev. A 40, 64216430.CrossRefGoogle ScholarPubMed
Staquet, C. & Sommeria, J. 2002 Internal gravity waves: from instabilities to turbulence. Annu. Rev. Fluid Mech. 34 (1), 559593.CrossRefGoogle Scholar
Taylor, J. R. & Sarkar, S. 2007 Internal gravity waves generated by a turbulent bottom Ekman layer. J. Fluid Mech. 590, 331354.CrossRefGoogle Scholar
Tennekes, H. 1975 Eulerian and Lagrangian time microscales in isotropic turbulence. J. Fluid Mech. 67 (3), 561567.CrossRefGoogle Scholar
Thorpe, S. A. 2018 Models of energy loss from internal waves breaking in the ocean. J. Fluid Mech. 836, 72116.CrossRefGoogle Scholar
Zhou, Y. & Rubinstein, R. 1996 Sweeping and straining effects in sound generation by high Reynolds number isotropic turbulence. Phys. Fluids 8 (3), 647649.CrossRefGoogle Scholar

Couston et al supplementary material

Movie of (a) $w(y = 0)$, (b) $T_z-\bar{T}_z$ at $y = 0$ (overbar denotes x average), (c) $w(z = 0.7)$, (d) $w(z = 1:3)$ for simulation case $C_8^{400}$. Variables in the wave region $(z > 1)$ in (a), (b) have been multiplied by $10^4$, $10^3$, respectively.

Download Couston et al supplementary material(Video)
Video 304 MB
23
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The energy flux spectrum of internal waves generated by turbulent convection
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The energy flux spectrum of internal waves generated by turbulent convection
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The energy flux spectrum of internal waves generated by turbulent convection
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *