Hostname: page-component-7d684dbfc8-kpkbf Total loading time: 0 Render date: 2023-09-28T21:06:55.282Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Escaping mass approach for inclined plane and round buoyant jets

Published online by Cambridge University Press:  12 March 2012

P. C. Yannopoulos*
Environmental Engineering Laboratory, Department of Civil Engineering, University of Patras, 265 04 Patras, Greece
A. A. Bloutsos
Environmental Engineering Laboratory, Department of Civil Engineering, University of Patras, 265 04 Patras, Greece
Email address for correspondence:


An integral model predicting the mean flow and mixing properties of inclined plane and round turbulent buoyant jets in a motionless environment of uniform density is proposed. The escaping masses from the main buoyant jet flow are simulated, and the model can be successfully applied to initial discharge inclinations from 90 to with respect to the horizontal plane. This complementary approach introduces a concentration coefficient, which is calibrated using experimental evidence. The present model has incorporated the second-order approach and, regarding the jet-core region, a jet-core model based on the advanced integral model for the production of more correct transverse profiles of the mean axial velocities and mean concentrations than the common Gaussian or top-hat profiles. The partial differential equations for momentum and tracer conservation are written in orthogonal and cylindrical curvilinear coordinates for inclined plane and round buoyant jets, respectively, and they are integrated under the closure assumptions of (a) quasi-linear spreading of the mean flow and mixing fields, and (b) known transverse profile distributions. The integral forms are solved by employing the Runge–Kutta algorithm. Since the most important contribution in the present model is the simulation of the escaping masses, the model has been called the escaping mass approach (EMA). Herein EMA is applied to predict the mean flow properties (trajectory characteristics, mean axial velocities and mean concentrations) for inclined plane and round buoyant jets. The results predicted are compared with experimental data available in the literature, and the accuracy obtained is more than satisfactory. The performance of the EMA is up to 56 % better than using classical integral procedures. EMA can be used for design purposes and for environmental impact assessment studies.

Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1. Abraham, G. 1963 Jet diffusion in stagnant ambient fluid. Tech. Rep. 29. Delft Hydraulics Lab.Google Scholar
2. Anwar, H. O. 1969 Behaviour of buoyant jet in calm fluid. J. Hydraul. Div. ASCE 95, 12891303.Google Scholar
3. Anwar, H. O. 1972 Measurements on horizontal buoyant jets in calm ambient fluid. La Houille Blanche 27, 311320.CrossRefGoogle Scholar
4. Batchelor, G. K. 2000 An Introduction to Fluid Dynamics. Cambridge University Press.CrossRefGoogle Scholar
5. Bloomfield, L. J. & Kerr, R. C. 2002 Inclined turbulent fountains. J. Fluid Mech. 451, 283294.CrossRefGoogle Scholar
6. Bloutsos, A. A. & Yannopoulos, P. C. 2009 Round turbulent buoyant jets discharged vertically upwards forming a regular polygon. J. Hydraul. Res. 47, 263274.CrossRefGoogle Scholar
7. Cederwall, K. 1968 Hydraulics of marine wastewater disposal. Tech. Rep. 42. Hydraulics Div., Chalmers Institute of Technology.Google Scholar
8. Cederwall, K. 1971 Buoyant slot jets into stagnant or flowing environments. Tech. Rep. KH-R-25. W. M. Keck Laboratory, California Institute of Technology.Google Scholar
9. Christodoulou, G. C. & Papakonstantis, I. G. 2010 Simplified estimates of trajectory of inclined negatively buoyant jets. In Environmental Hydraulics (ed. Christodoulou, G. C. & Stamou, A. I. ), vol. I, pp. 165170. Taylor & Francis.Google Scholar
10. Chu, P. C. K. 1996 Mixing of turbulent advected line puffs. PhD thesis, Department of Civil and Structural Engineering, University of Hong Kong.Google Scholar
11. Cipolina, A., Bonfiglio, A., Micale, G. & Brucato, A. 2004 Dense jet modelling applied to the design of dense effluent diffusers. Desalination 167, 459468.CrossRefGoogle Scholar
12. Cipolina, A., Brucato, A., Grisafi, F. & Nicosia, S. 2005 Bench-scale investigation of inclined dense jets. J. Hydraul. Engng ASCE 131, 10171022.CrossRefGoogle Scholar
13. Cuthbertson, A. J. S., Apsley, D. D., Davies, P. A., Lipani, G. & Stansby, P. K. 2008 Deposition from particle-laden, plane, turbulent, buoyant jets. J. Hydraul. Engng ASCE 134, 11101122.CrossRefGoogle Scholar
14. Cuthbertson, A. J. S. & Davies, P. A. 2008 Deposition from particle-laden, round, turbulent, horizontal, buoyant jets in stationary and coflowing receiving fluids. J. Hydraul. Engng ASCE 134, 390402.CrossRefGoogle Scholar
15. Davidson, M. J. 1989 The behaviour of single and multiple, horizontally discharged, buoyant flows in a non-turbulent coflowing ambient fluid. PhD thesis, Rep. 89–3, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand.Google Scholar
16. Davidson, M. J. & Pun, K. L. 2000 Locating discharge trajectories in still and moving ambient fluids. J. Hydraul. Engng ASCE 126, 513524.CrossRefGoogle Scholar
17. Ferrari, S. & Querzoli, G. 2010 Mixing and re-entrainment in a negatively buoyant jet. J. Hydraul. Res. 48, 632640.CrossRefGoogle Scholar
18. Fischer, H. B., List, E. J., Koh, R. C. Y., Imberger, J. & Brooks, N. H. 1979 Mixing in Inland and Coastal Waters. Academic Press.Google Scholar
19. Hansen, J. & Schroder, H. 1968 Horizontal Jet Dilution Studies by Use of Radioactive Isotopes, Acta Polytechnica Scandinavica , vol. 49. Danish Academy of Technical Sciences.Google Scholar
20. Jirka, G. H. 2004 Integral model for turbulent buoyant jets in unbounded stratified flows – Part I: single round jet. Environ. Fluid Mech. 4, 156.CrossRefGoogle Scholar
21. Jirka, G. H. 2008 Improved discharge configurations for brine effluents from desalination plants. J. Hydraul. Engng ASCE 134, 116120.CrossRefGoogle Scholar
22. Jirka, G. H. & Harleman, D. R. F. 1973 The mechanics of submerged multiport diffusers for buoyant discharges in shallow water. Tech. Rep. 169. R. Parson Laboratory for Water Resources and Hydrodynamics, MIT.Google Scholar
23. Kaminski, E., Tait, S. & Carazzo, G. 2005 Turbulent entrainment in jets with arbitrary buoyancy. J. Fluid Mech. 526, 361376.CrossRefGoogle Scholar
24. Kikkert, G. A. 2006 Buoyant jets with two and three dimensional trajectories. PhD thesis, University of Canterbury, Christchurch, New Zealand.Google Scholar
25. Kikkert, G. A., Davidson, M. J. & Nokes, R. I. 2007 Inclined negatively buoyant discharges. J. Hydraul. Engng ASCE 133, 545554.CrossRefGoogle Scholar
26. Korovkin, V. N. & Andrievskii, A. P. 2000 Turbulent free-convective jets: numerical solution of model equations of transfer. J. Engng Phys. Thermodyn. 73, 602608.CrossRefGoogle Scholar
27. Lane-Serff, G. F., Linden, P. F. & Hillel, M. 1993 Forced, angled plumes. J. Hazard. Mater. 33, 7599.CrossRefGoogle Scholar
28. Lee, J. H. W. & Cheung, V. 1990 Generalized Lagrangian model for buoyant jets in current. J. Environ. Engng ASCE 116, 10851106.CrossRefGoogle Scholar
29. Lee, J. H. W. & Chu, V. H. 2003 Turbulent Jets and Plumes – A Lagrangian Approach. Kluwer.CrossRefGoogle Scholar
30. Lindberg, W. R. 1994 Experiments on negatively buoyant jets, with or without crossflow. In Recent Research Advances in the Fluid Mechanics of Turbulent Jets and Plumes (ed. Davies, P. A. & Valente Neves, M. J. ), pp. 131145. Kluwer.CrossRefGoogle Scholar
31. Liseth, P. 1970 Mixing of merging buoyant jets from a manifold in stagnant receiving water of uniform density. Tech. Rep. HEL 23-1. Hydraulic Engineering Lab., University of California.Google Scholar
32. Morton, B. R., Taylor, G. I. & Turner, J. S. 1956 Turbulent gravitational convection from maintained instantaneous sources. Proc. R. Soc. Lond. A 234, 123.CrossRefGoogle Scholar
33. Nemlioglu, S. & Roberts, P. J. W. 2006 Experiments on dense jets using 3D laser-induced fluorescence. In Proceedings, 4th International Conference on Marine Waste Water Disposal and Marine Environment, and 2nd International Exhibition of Materials, Equipment and Services for Coastal WWTP, Outfalls and Sealines, Antalya, Turkey, p. 10.Google Scholar
34. Noutsopoulos, G. C. & Yannopoulos, P. C. 1987 The round vertical turbulent buoyant jet. J. Hydraul. Res. 25, 481502.CrossRefGoogle Scholar
35. Papakonstantis, I. G. 2009 Turbulent round negatively buoyant jets at an angle in a calm homogeneous ambient. PhD thesis, School of Civil Engineering, National Technical University of Athens, Greece (in Greek).Google Scholar
36. Papakonstantis, I. G., Christodoulou, G. C. & Papanicolaou, P. N. 2011a Inclined negatively buoyant jets 1: geometrical characteristics. J. Hydraul. Res. 49, 312.CrossRefGoogle Scholar
37. Papakonstantis, I. G., Christodoulou, G. C. & Papanicolaou, P. N. 2011b Inclined negatively buoyant jets 2: concentration measurements. J. Hydraul. Res. 49, 1322.CrossRefGoogle Scholar
38. Plourde, F., Pham, M. V., Kim, S. D. & Balachandar, S. 2008 Direct numerical simulations of a rapidly expanding thermal plume: structure and entrainment interaction. J. Fluid Mech. 604, 99123.CrossRefGoogle Scholar
39. Ramaprian, B. R. & Chandrasekhara, M. S. 1983 Study of vertical plane turbulent jets and plumes. Tech. Rep. IIHR No. 257. Iowa Institute of Hydraulic Research, University of Iowa.Google Scholar
40. Reeder, M. F., Huffman, R. E., Branam, R. D., Lebay, K. D. & Meents, S. M. 2011 Near-field development of gas-phase horizontal laminar jets with positive and negative buoyancy measured with filtered Rayleigh scattering. Exp. Fluids 50, 14551472.CrossRefGoogle Scholar
41. Roberts, P. G. W., Ferrier, A. & Daviero, G. 1997 Mixing in inclined dense jets. J. Hydraul. Engng ASCE 123, 693699.CrossRefGoogle Scholar
42. Roberts, P. G. W. & Toms, G. 1987 Inclined dense jets in flowing current. J. Hydraul. Engng ASCE 113, 323341.CrossRefGoogle Scholar
43. Shao, D. & Law, A. W.-K. 2009 Turbulent mass and momentum transport of a circular offset dense jet. J. Turbul. 10, 124.CrossRefGoogle Scholar
44. Shao, D. & Law, A. W.-K. 2010 Mixing and boundary interactions of and inclined dense jets. Environ. Fluid Mech. 10, 521553.CrossRefGoogle Scholar
45. Sobey, R. J., Johnston, A. J. & Keane, R. D. 1988 Horizontal round buoyant jet in shallow water. J. Hydraul. Engng ASCE 114, 910929.CrossRefGoogle Scholar
46. Wood, I. R., Bell, R. G. & Wilkinson, D. L. 1993 Ocean Disposal of Wastewater. World Scientific.CrossRefGoogle Scholar
47. Yannopoulos, P. C. 2006 An improved integral model for plane and round turbulent buoyant jets. J. Fluid Mech. 547, 267296.CrossRefGoogle Scholar
48. Yannopoulos, P. C. 2010 Advanced integral model for groups of interacting round turbulent buoyant jets. Environ. Fluid Mech. 10, 415450.CrossRefGoogle Scholar
49. Yannopoulos, P. C. 2011 Integral model for the reattachment of two interacting turbulent buoyant jets. In Proceedings of 7th International Symposium on Stratified Flows, 22–26 August 2011, Rome, Italy (ed. Cenedese, A., Espa, S. & Purini, R. ). p. 8. Sapienza University of Rome.Google Scholar
50. Yannopoulos, P. C. & Noutsopoulos, G. C. 1990 The plane vertical turbulent buoyant jet. J. Hydraul. Res. 28, 116.CrossRefGoogle Scholar
51. Yannopoulos, P. C. & Noutsopoulos, G. C. 2006a Interaction of vertical round turbulent buoyant jets. Part I. Entrainment restriction approach. J. Hydraul. Res. 44, 218232.CrossRefGoogle Scholar
52. Yannopoulos, P. C. & Noutsopoulos, G. C. 2006b Interaction of vertical round turbulent buoyant jets. Part II. Superposition method. J. Hydraul. Res. 44, 233248.CrossRefGoogle Scholar
53. Yannopoulos, P. C. & Noutsopoulos, G. C. 2008 Closure to the discussion by B.S. Pani on ‘Interaction of vertical round turbulent buoyant jets. Part II: Superposition method’. J. Hydraul. Res. 44 (2), 233248; J. Hydraul Res. 46, 563–567.CrossRefGoogle Scholar
54. Zeitoun, M. A., McIlhenny, W. F. & Reid, R. O. 1970 Conceptual designs of outfall systems for desalting plants. Tech. Rep. R&D Progress Report, 550. Office of Saline Water, US Dept of Interior.Google Scholar