Hostname: page-component-7d684dbfc8-mqbnt Total loading time: 0 Render date: 2023-09-30T15:44:15.626Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Experimental investigation of the water entry and/or exit of axisymmetric bodies

Published online by Cambridge University Press:  02 September 2020

Thibaut Breton
Ifremer, RDT, F-29280Plouzané, France ENSTA Bretagne, UMR CNRS 6027, IRDL, 29806Brest CEDEX 09, France
A. Tassin*
Ifremer, RDT, F-29280Plouzané, France
N. Jacques
ENSTA Bretagne, UMR CNRS 6027, IRDL, 29806Brest CEDEX 09, France
Email address for correspondence:


This paper presents an experimental investigation of the evolution of the wetted surface and of the hydrodynamic force during the water exit of a body initially floating at the water surface, and during combined water entry and exit. The evolution of the surface of contact between the body and the water is measured using transparent mock-ups and an LED edge-lighting system. This technique makes it possible to follow the evolution of the wetted surface during both the entry and exit phases with a high-speed video camera placed above the mock-up. The feasibility of the technique is shown for different axisymmetric bodies: a circular disc, a cone and a sphere. The evolution of the hydrodynamic force and of the radius of the wetted surface measured during the experiments are compared with theoretical results obtained with a combined Wagner-modified von Karman approach (Tassin et al. J. Fluids Struct., vol. 40, 2013, pp. 317–336), the linearized water exit model of Korobkin et al. (J. Fluids Struct., vol. 69, 2017a, pp. 16–33) and the small-time self-similar solution of Korobkin et al. (J. Engng Maths, vol. 102, 2017b, pp. 117–130).

JFM Papers
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Baarholm, R. & Faltinsen, O. M. 2004 Wave impact underneath horizontal decks. J. Mar. Sci. Technol. 9, 113.CrossRefGoogle Scholar
Bensch, L., Shigunov, V., Beuck, G. & Söding, H. 2001 Planned ditching simulation of a transport airplane. In KRASH USERS SEMINAR, 7–10 January 2001, Phoenix, Arizona.Google Scholar
Duez, C., Ybert, C., Barentin, C., Cottin-Bizonne, C. & Bocquet, L. 2008 Dynamics of Fakir liquids: from slip to splash. J. Adhes. Sci. Technol. 22, 335351.CrossRefGoogle Scholar
El Malki Alaoui, A., Nême, A., Tassin, A. & Jacques, N. 2012 Experimental study of slamming coefficients during vertical water entry of axisymmetric rigid shapes at constant speeds. Appl. Ocean Res. 37, 183197.CrossRefGoogle Scholar
Halbout, S. 2011 Contribution à l’étude des interactions fluide-structure lors de l'impact hydrodynamique avec vitesse d'avance d'un système de flottabilité d'hélicoptère (in french). PhD thesis, Université d'Aix-Marseille, France.Google Scholar
Iafrati, A. & Grizzi, S. 2019 Cavitation and ventilation modalities during ditching. Phys. Fluids 31 (5), 052101.CrossRefGoogle Scholar
Kaplan, P. 1987 Analysis and prediction of flat bottom slamming impact of advanced marine vehicles in waves. Intl Shipbuilding Prog. 34 (391), 4453.CrossRefGoogle Scholar
Korobkin, A. A. 2007 Second-order Wagner theory of wave impact. J. Engng Maths 58 (1–4), 121139.CrossRefGoogle Scholar
Korobkin, A. A. 2013 A linearized model of water exit. J. Fluid Mech. 737, 368386.CrossRefGoogle Scholar
Korobkin, A. A. & Scolan, Y.-M. 2006 Three-dimensional theory of water impact. Part 2. Linearized Wagner problem. J. Fluid Mech. 549, 343373.CrossRefGoogle Scholar
Korobkin, A., Khabakhpasheva, T. & Maki, K. 2017 a Hydrodynamic forces in water exit problems. J. Fluids Struct. 69, 1633.CrossRefGoogle Scholar
Korobkin, A., Khabakhpasheva, T. & Rodríguez-Rodríguez, J. 2017 b Initial stage of plate lifting from a water surface. J. Engng Maths 102, 117130.CrossRefGoogle Scholar
Panciroli, R., Abrate, S., Minak, G. & Zucchelli, A. 2012 Hydroelasticity in water-entry problems: comparison between experimental and SPH results. Compos. Struct. 94 (2), 532539.CrossRefGoogle Scholar
Piro, D. J. & Maki, K. J. 2013 a An adaptive interface compression method for water entry and exit. Tech. Rep. 2013-350. University of Michigan Department of Naval Architecture and Marine Engineering.Google Scholar
Piro, D. J. & Maki, K. J. 2013 b Hydroelastic analysis of bodies that enter and exit water. J. Fluids Struct. 37, 134150.CrossRefGoogle Scholar
Reinhard, M. 2013 Free elastic plate impact into water. PhD thesis, University of East Anglia, UK.Google Scholar
Reinhard, M., Korobkin, A. A. & Cooker, M. J. 2012 The bounce of a blunt body from a water surface at high horizontal speed. In 27th International Workshop on Water Waves and Floating Bodies. 22–25 April 2012, Copenhagen, Denmark.Google Scholar
Reis, P. M., Jung, S., Aristoff, J. M. & Stocker, R. 2010 How cats lap: water uptake by felis catus. Science 330, 12311234.CrossRefGoogle ScholarPubMed
Scolan, Y.-M., Remy, F. & Thibault, B. 2006 Impact of three-dimensional standing waves on a flat horizontal plate. In 21st International Workshop on Water Waves and Floating Bodies. 2–5 April 2006, Loughborough, U.K.Google Scholar
Semenov, Y. A. & Yoon, B.-S. 2009 Onset of flow separation for the oblique water impact of a wedge. Phys. Fluids 21, 112103.CrossRefGoogle Scholar
Shams, A., Zhao, S. & Porfiri, M. 2017 Hydroelastic slamming of flexible wedges: modeling and experiments from water entry to exit. Phys. Fluids 29 (3), 037107.CrossRefGoogle Scholar
Sun, H. & Helmers, J. B. 2015 Slamming loads on a wedge elastically suspended on a marine structure. In ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers.CrossRefGoogle Scholar
Tang, Z., von Gioi, R. G., Monasse, P. & Morel, J.-M. 2017 A precision analysis of camera distortion models. IEEE Trans. Image Process. 26, 26942704.CrossRefGoogle ScholarPubMed
Tassin, A., Breton, T., Forest, B., Ohana, J., Chalony, S., Le Roux, D. & Tancray, A. 2017 Visualization of the contact line during the water exit of flat plates. Exp. Fluids 58 (8), 104.CrossRefGoogle Scholar
Tassin, A., Jacques, N., El Malki Alaoui, A., Nême, A. & Leblé, B. 2012 Hydrodynamic loads during water impact of three-dimensional solids: modelling and experiments. J. Fluids Struct. 28, 211231.CrossRefGoogle Scholar
Tassin, A., Piro, D. J., Korobkin, A. A., Maki, K. J. & Cooker, M. J. 2013 Two-dimensional water entry and exit of a body whose shape varies in time. J. Fluids Struct. 40, 317336.CrossRefGoogle Scholar
Taubin, G. 1991 Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations with applications to edge and range image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 13 (11), 11151138.CrossRefGoogle Scholar
Vega-Martínez, P., Rodríguez-Rodríguez, J., Khabakhpasheva, T. & Korobkin, A. 2019 Hydro-elastic effects during the fast lifting of a disc from a water surface. J. Fluid Mech. 869, 726751.CrossRefGoogle Scholar
Wagner, H. 1931 Landing of seaplanes. NACA Technical Memorandum 622, pp. 1–23.Google Scholar
Wagner, H. 1932 Über Stoß- und Gleitvorgänge an der Oberfläche von Flüssigkeiten. Z. Angew. Math. Mech. 12, 193215 (in German).CrossRefGoogle Scholar