Published online by Cambridge University Press: 19 April 2016
Time-resolved tomographic particle image velocimetry experiments show that new hairpin vortices are generated within a fully developed and unperturbed turbulent boundary layer. The measurements are taken at a Reynolds number based on the momentum thickness of 2038, and cover the near-wall region below $y^{+}=140$, where
$y^{+}$ is the wall-normal distance in wall units. Instantaneous visualizations of the flow reveal near-wall low-speed streaks with associated quasi-streamwise vortices, retrograde inverted arch vortices, hairpin vortices and hairpin packets. The hairpin heads are observed as close to the wall as
$y^{+}=30$. Examples of hairpin packet evolution reveal the development of new hairpin vortices, which are created upstream and close to the wall in a manner consistent with the auto-generation model (Zhou et al., J. Fluid Mech., vol. 387, 1999, pp. 353–396). The development of the new hairpin appears to be initiated by an approaching sweep event, which perturbs the shear layer associated with the initial packet. The shear layer rolls up, thereby forming the new hairpin head. The head subsequently connects to existing streamwise vortices and develops into a hairpin. The time scale associated with the hairpin auto-generation is 20–30 wall units of time. This demonstrates that hairpins can be created over short distances within a developed turbulent boundary layer, implying that they are not simply remnants of the laminar-to-turbulent transition process far upstream.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.