Skip to main content Accessibility help
×
Home
Hostname: page-component-8bbf57454-kwtxg Total loading time: 0.264 Render date: 2022-01-24T21:45:07.325Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Explosive ripple instability due to incipient wave breaking

Published online by Cambridge University Press:  28 January 2019

Alexei A. Mailybaev*
Affiliation:
Instituto Nacional de Matemática Pura e Aplicada – IMPA, Rio de Janeiro, CEP 22460-320, Brazil
André Nachbin
Affiliation:
Instituto Nacional de Matemática Pura e Aplicada – IMPA, Rio de Janeiro, CEP 22460-320, Brazil
*
Email address for correspondence: alexei@impa.br

Abstract

Considering two-dimensional potential ideal flow with a free surface and finite depth, we study the dynamics of small-amplitude and short-wavelength wavetrains propagating in the background of a steepening nonlinear wave. This can be seen as a model for small ripples developing on the slopes of breaking waves in the surf zone. Using the concept of wave action as an adiabatic invariant, we derive an explicit asymptotic expression for the change of ripple steepness. Through this expression, nonlinear effects are described using the intrinsic frequency and intrinsic gravity along Lagrangian (material) trajectories on a free surface. We show that strong compression near the tip on the wave leads to an explosive ripple instability. This instability may play an important role in the understanding of fragmentation and whitecapping at the surface of breaking waves. Analytical results are confirmed by numerical simulations using a potential theory model.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agafontsev, D. S., Kuznetsov, E. A. & Mailybaev, A. A. 2015 Development of high vorticity structures in incompressible 3D Euler equations. Phys. Fluids 27 (8), 085102.10.1063/1.4927680CrossRefGoogle Scholar
Baker, G. R., Meiron, D. I. & Orszag, S. A. 1982 Generalized vortex methods for free-surface flow problems. J. Fluid Mech. 123, 477501.10.1017/S0022112082003164CrossRefGoogle Scholar
Baker, G. R. & Xie, C. 2011 Singularities in the complex physical plane for deep water waves. J. Fluid Mech. 685, 83116.10.1017/jfm.2011.283CrossRefGoogle Scholar
Bretherton, F. P. & Garrett, C. J. R. 1968 Wavetrains in inhomogeneous moving media. Proc. R. Soc. Lond. A 302 (1471), 529554.Google Scholar
Bühler, O. 2014 Waves and Mean Flows. Cambridge University Press.10.1017/CBO9781107478701CrossRefGoogle Scholar
Castro, A., Córdoba, D., Fefferman, C. L, Gancedo, F. & Gómez-Serrano, J. 2012 Splash singularity for water waves. Proc. Natl Acad. Sci. USA 109 (3), 733738.10.1073/pnas.1115948108CrossRefGoogle ScholarPubMed
Ceniceros, H. D. & Hou, T. Y. 1999 Dynamic generation of capillary waves. Phys. Fluids 11 (5), 10421050.10.1063/1.869975CrossRefGoogle Scholar
Dyachenko, A. I., Kuznetsov, E. A., Spector, M. D. & Zakharov, V. E. 1996a Analytical description of the free surface dynamics of an ideal fluid (canonical formalism and conformal mapping). Phys. Lett. A 221 (1), 7379.10.1016/0375-9601(96)00417-3CrossRefGoogle Scholar
Dyachenko, A. I., Zakharov, V. E. & Kuznetsov, E. A. 1996b Nonlinear dynamics of the free surface of an ideal fluid. Plasma Phys. Rep. 22 (10), 829840.Google Scholar
Dyachenko, S. & Newell, A. C. 2016 Whitecapping. Stud. Appl. Maths 137 (2), 199213.10.1111/sapm.12126CrossRefGoogle Scholar
Grilli, S. T. & Svendsen, I. A. 1990 Corner problems and global accuracy in the boundary element solution of nonlinear wave flows. Engng Anal. Bound. Elem. 7 (4), 178195.10.1016/0955-7997(90)90004-SCrossRefGoogle Scholar
Hou, T. Y. 2009 Blow-up or no blow-up? A unified computational and analytic approach to 3D incompressible Euler and Navier–Stokes equations. Acta Numerica 18, 277346.10.1017/S0962492906420018CrossRefGoogle Scholar
Kuznetsov, E. A., Spector, M. D. & Zakharov, V. E. 1994 Formation of singularities on the free surface of an ideal fluid. Phys. Rev. E 49 (2), 12831290.Google ScholarPubMed
Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics. Pergamon.Google Scholar
Lighthill, J. 2001 Waves in Fluids. Cambridge University Press.Google Scholar
Longuet-Higgins, M. S. 1983 Bubbles, breaking waves and hyperbolic jets at a free surface. J. Fluid Mech. 127, 103121.10.1017/S0022112083002645CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1995 Parasitic capillary waves: a direct calculation. J. Fluid Mech. 301, 79107.10.1017/S0022112095003818CrossRefGoogle Scholar
Longuet-Higgins, M. S. & Cokelet, E. D. 1976 The deformation of steep surface waves on water-I. a numerical method of computation. Proc. R. Soc. Lond. A 350 (1660), 126.10.1098/rspa.1976.0092CrossRefGoogle Scholar
Peregrine, D. H. 1976 Interaction of water waves and currents. Adv. Appl. Mech. 16, 9117.10.1016/S0065-2156(08)70087-5CrossRefGoogle Scholar
Peregrine, D. H. 1983 Breaking waves on beaches. Annu. Rev. Fluid Mech. 15 (1), 149178.10.1146/annurev.fl.15.010183.001053CrossRefGoogle Scholar
Ribeiro, R., Milewski, P. A. & Nachbin, A. 2017 Flow structure beneath rotational water waves with stagnation points. J. Fluid Mech. 812, 792814.10.1017/jfm.2016.820CrossRefGoogle Scholar
Villermaux, E. 2007 Fragmentation. Annu. Rev. Fluid Mech. 39, 419446.10.1146/annurev.fluid.39.050905.110214CrossRefGoogle Scholar
Whitham, G. B. 1974 Linear and Nonlinear Waves. Wiley.Google Scholar
Wu, S. 1997 Well-posedness in sobolev spaces of the full water wave problem in 2-d. Invent. Math. 130 (1), 3972.10.1007/s002220050177CrossRefGoogle Scholar
Yu, J. & Howard, L. N. 2012 Exact Floquet theory for waves over arbitrary periodic topographies. J. Fluid Mech. 712, 451470.10.1017/jfm.2012.432CrossRefGoogle Scholar
Zakharov, V. E., Dyachenko, A. I. & Vasilyev, O. A. 2002 New method for numerical simulation of a nonstationary potential flow of incompressible fluid with a free surface. Eur. J. Mech. (B/Fluids) 21 (3), 283291.10.1016/S0997-7546(02)01189-5CrossRefGoogle Scholar
Zeff, B. W., Kleber, B., Fineberg, J. & Lathrop, D. P. 2000 Singularity dynamics in curvature collapse and jet eruption on a fluid surface. Nature 403 (6768), 401404.10.1038/35000151CrossRefGoogle ScholarPubMed
2
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Explosive ripple instability due to incipient wave breaking
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Explosive ripple instability due to incipient wave breaking
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Explosive ripple instability due to incipient wave breaking
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *