Hostname: page-component-54dcc4c588-sq2k7 Total loading time: 0 Render date: 2025-09-11T10:32:54.758Z Has data issue: false hasContentIssue false

The fate of rotating point plumes in an unstratified environment: from free growth to boundary interactions

Published online by Cambridge University Press:  01 September 2025

Shuang Wang*
Affiliation:
Earth, Atmospheric and Planetary Science Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Wanying Kang
Affiliation:
Earth, Atmospheric and Planetary Science Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Yixiao Zhang
Affiliation:
Earth, Atmospheric and Planetary Science Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
John Marshall
Affiliation:
Earth, Atmospheric and Planetary Science Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
*
Corresponding author: Shuang Wang, shuangw@mit.edu

Abstract

Plumes generated from a point buoyant source are relevant to hydrothermal vents in lakes and oceans on and beyond Earth. They play a crucial role in determining heat and material transport and thereby local biospheres. In this study, we investigate the development of rotating point plumes in an unstratified environment using both theory and numerical simulations. We find that in a sufficiently large domain, point plumes cease to rise beyond a penetration height $h_{{f}}$, at which buoyancy flux from the heat source is leaked laterally to the ambient fluid. The height $h_{{f}}$ is found to scale with the rotational length scale $h_{ \!{ f}}\sim L_{ \!\textit{ rot}}^p\equiv ({F_0}/{f^3})^{{1}/{4}},$ where $F_0$ is the source buoyancy flux, and $f=2\varOmega$ is the Coriolis parameter ($\varOmega$ is the rotation rate). In a limited domain, the plume may reach the top boundary or merge with neighbouring plumes. Whether rotational effects dominate depends on how $L_{\textit{rot}}^{p}$ compares to the height of the domain $H$ and the distance between the plumes $L$. Four parameter regimes can therefore be identified, and are explored here through numerical simulation. Our study advances the understanding of hydrothermal plumes and heat/material transport, with applications ranging from subsurface lakes to oceans in icy worlds such as Snowball Earth, Europa and Enceladus.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abdalla, I.E., Cook, M.J. & Hunt, G.R. 2009 Numerical study of thermal plume characteristics and entrainment in an enclosure with a point heat source. Eng. Applics. Comput. Fluid Mech. 3 (4), 608630.Google Scholar
Anderson, J.D., Schubert, G., Jacobson, R.A., Lau, E.L., Moore, W.B. & Sjogren, W.L. 1998 Europa’s differentiated internal structure: inferences from four Galileo encounters. Science 281 (5385), 20192022.10.1126/science.281.5385.2019CrossRefGoogle ScholarPubMed
Ashkenazy, Y., Gildor, H., Losch, M., Macdonald, F.A., Schrag, D.P. & Tziperman, E. 2013 Dynamics of a Snowball Earth ocean. Nature 495 (7439), 9093.10.1038/nature11894CrossRefGoogle ScholarPubMed
Ashkenazy, Y. & Tziperman, E. 2021 Dynamic Europa ocean shows transient Taylor columns and convection driven by ice melting and salinity. Nat. Commun. 12, 6376.10.1038/s41467-021-26710-0CrossRefGoogle ScholarPubMed
Baines, P.G. & Sparks, R.S.J. 2005 Dynamics of giant volcanic ash clouds from supervolcanic eruptions. Geophys. Res. Lett. 32 (L24), L24808.10.1029/2005GL024597CrossRefGoogle Scholar
Baines, W.D. & Turner, J.S. 1969 Turbulent buoyant convection from a source in a confined region. J. Fluid Mech. 37 (1), 5180.10.1017/S0022112069000413CrossRefGoogle Scholar
Bhaganagar, K. & Bhimireddy, S.R. 2020 Numerical investigation of starting turbulent buoyant plumes released in neutral atmosphere. J. Fluid Mech. 900, A32.10.1017/jfm.2020.474CrossRefGoogle Scholar
Bire, S., Kang, W., Ramadhan, A., Campin, J.-M. & Marshall, J. 2022 Exploring ocean circulation on icy moons heated from below. J. Geophys. Res.: Planets 127 (3), e2021JE007025.10.1029/2021JE007025CrossRefGoogle Scholar
Bire, S., Mittal, T., Kang, W., Ramadhan, A., Tuckman, P.J., German, C.R., Thurnherr, A.M., Marshall, J. 2023 Divergent behavior of hydrothermal plumes in fresh versus salty icy ocean worlds. J. Geophys. Res.: Planets 128 (11), e2023JE007740.10.1029/2023JE007740CrossRefGoogle Scholar
Boubnov, B.M. & van Heijst, G.J.F. 1994 Experiments on convection from a horizontal plate with and without background rotation. Exp. Fluids 16 (3), 155164.10.1007/BF00206534CrossRefGoogle Scholar
Bouffard, D. & Wüest, A. 2019 Convection in lakes. Annu. Rev. Fluid Mech. 51, 189215.10.1146/annurev-fluid-010518-040506CrossRefGoogle Scholar
Brickman, D. 1995 Heat flux partitioning in open-ocean convection. J. Phys. Oceanogr. 25 (11), 26092623.10.1175/1520-0485(1995)025<2609:HFPIOO>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Choblet, G., Tobie, G., Sotin, C., Běhounková, M., Čadek, O., Postberg, F. & Souček, O. 2017 Powering prolonged hydrothermal activity inside Enceladus. Nat. Astron. 1 (12), 841847.10.1038/s41550-017-0289-8CrossRefGoogle Scholar
Collins, G.C. & Goodman, J.C. 2007 Enceladus’ south polar sea. Icarus 189 (1), 7282.10.1016/j.icarus.2007.01.010CrossRefGoogle Scholar
Contini, D., Donateo, A., Cesari, D. & Robins, A.G. 2011 Comparison of plume rise models against water tank experimental data for neutral and stable crossflows. J. Wind Eng. Ind. Aerodyn. 99 (5), 539553.10.1016/j.jweia.2011.02.003CrossRefGoogle Scholar
Eady, E.T. 1949 Long waves and cyclone waves. Tellus 1 (3), 3352.10.3402/tellusa.v1i3.8507CrossRefGoogle Scholar
Fabregat Tomàs, A., Poje, A.C., Özgökmen, T.M. & Dewar, W.K. 2016 Effects of rotation on turbulent buoyant plumes in stratified environments. J. Geophys. Res.: Oceans 121 (8), 53975417.10.1002/2016JC011737CrossRefGoogle Scholar
Fernando, H.J.S., Chen, R.-R. & Ayotte, B.A. 1998 Development of a point plume in the presence of background rotation. Phys. Fluids 10 (9), 23692383.10.1063/1.869754CrossRefGoogle Scholar
Fernando, H.J.S., Chen, R.-R. & Boyer, D.L. 1991 Effects of rotation on convective turbulence. J. Fluid Mech. 228, 513547.10.1017/S002211209100280XCrossRefGoogle Scholar
Ferrero, E., Salizzoni, P., Ive, F., Manfrin, M., Forza, R., Bisignano, A. & Mortarini, L. 2022 Effect of rotation on buoyant plume dynamics. Heat Mass Transfer 58 (7), 11711185.10.1007/s00231-021-03167-xCrossRefGoogle Scholar
Frank, D., Landel, J.R., Dalziel, S.B. & Linden, P.F. 2017 Anticyclonic precession of a plume in a rotating environment. Geophys. Res. Lett. 44 (18), 94009407.10.1002/2017GL074191CrossRefGoogle Scholar
Frank, D., Landel, J.R., Dalziel, S.B. & Linden, P.F. 2021 Effects of background rotation on the dynamics of multiphase plumes. J. Fluid Mech. 915, A2.10.1017/jfm.2020.1181CrossRefGoogle Scholar
German, C.R. & Seyfried, W.E. 2014 8.7 – hydrothermal processes. In Treatise On Geochemistry. 2nd edn (ed. H.D. Holland & K.K. Turekian), pp. 191233. Elsevier.10.1016/B978-0-08-095975-7.00607-0CrossRefGoogle Scholar
Goodman, J.C., Collins, G.C., Marshall, J. & Pierrehumbert, R.T. 2004 Hydrothermal plume dynamics on Europa: implications for chaos formation. J. Geophys. Res.: Planets 109 (E3), E03008.Google Scholar
Goodman, J.C. & Lenferink, E. 2012 Numerical simulations of marine hydrothermal plumes for Europa and other icy worlds. Icarus 221 (2), 970983.10.1016/j.icarus.2012.08.027CrossRefGoogle Scholar
Grinstein, F.F., Margolin, L.G. & Rider, W.J. 2007 Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics. Cambridge University Press.10.1017/CBO9780511618604CrossRefGoogle Scholar
Hansen, C.J., Esposito, L., Stewart, A.I.F., Colwell, J., Hendrix, A., Pryor, W., Shemansky, D. & West, R. 2006 Enceladus’ water vapor plume. Science 311 (5766), 14221425.10.1126/science.1121254CrossRefGoogle ScholarPubMed
Jones, H. & Marshall, J. 1993 Convection with rotation in a neutral ocean: a study of open-ocean deep convection. J. Phys. Oceanogr. 23 (6), 10091039.10.1175/1520-0485(1993)023<1009:CWRIAN>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Kang, W., Marshall, J., Mittal, T. & Bire, S. 2022 a Ocean dynamics and tracer transport over the south pole geysers of Enceladus. Mon. Not. R. Astron. Soc. 517 (3), 34853494.10.1093/mnras/stac2882CrossRefGoogle Scholar
Kang, W., Mittal, T., Bire, S., Campin, J.-M. & Marshall, J. 2022 b How does salinity shape ocean circulation and ice geometry on Enceladus and other icy satellites? Sci. Adv. 8 (29), eabm4665.10.1126/sciadv.abm4665CrossRefGoogle ScholarPubMed
Karaca, M., Lardjane, N. & Fedioun, I. 2012 Implicit large eddy simulation of high-speed non-reacting and reacting air/H2 jets with a 5th order WENO scheme. Comput. Fluids 62, 2544.10.1016/j.compfluid.2012.03.013CrossRefGoogle Scholar
Kitamura, S. & Sumita, I. 2011 Experiments on a turbulent plume: shape analyses. J. Geophys. Res.: Solid Earth 116 (B3), B03208.Google Scholar
Legg, S., Jones, H. & Visbeck, M. 1996 A heton perspective of baroclinic eddy transfer in localized open ocean convection. J. Phys. Oceanogr. 26 (10), 22512266.10.1175/1520-0485(1996)026<2251:AHPOBE>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Legg, S. & Marshall, J. 1993 A heton model of the spreading phase of open-ocean deep convection. J. Phys. Oceanogr. 23 (6), 10401056.10.1175/1520-0485(1993)023<1040:AHMOTS>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Li, S. & Flynn, M.R. 2020 Merging of two plumes from area sources with applications to cooling towers. Phys. Rev. Fluids 5, 054502.10.1103/PhysRevFluids.5.054502CrossRefGoogle Scholar
List, E.J. 1982 Turbulent jets and plumes. Annu. Rev. Fluid Mech. 14, 189212.10.1146/annurev.fl.14.010182.001201CrossRefGoogle Scholar
List, E.J. & Imberger, J. 1973 Turbulent entrainment in buoyant jets and plumes. J. Hydraul. Div. 99 (9), 14611474.10.1061/JYCEAJ.0003740CrossRefGoogle Scholar
Lowell, R.P. & DuBose, M. 2005 Hydrothermal systems on Europa. Geophys. Res. Lett. 32 (L5), L05202.10.1029/2005GL022375CrossRefGoogle Scholar
Lupton, J.E., Delaney, J.R., Johnson, H.P. & Tivey, M.K. 1985 Entrainment and vertical transport of deep-ocean water by buoyant hydrothermal plumes. Nature 316 (6029), 621623.10.1038/316621a0CrossRefGoogle Scholar
Ma, Y., Flynn, M.R. & Sutherland, B.R. 2020 Plumes in a rotating two-layer stratified fluid. Environ. Fluid Mech. 20 (1), 103122.10.1007/s10652-019-09696-8CrossRefGoogle Scholar
Marshall, J. & Schott, F. 1999 Open-ocean convection: observations, theory, and models. Rev. Geophys. 37 (1), 164.10.1029/98RG02739CrossRefGoogle Scholar
Maxworthy, T. 1997 Convection into domains with open boundaries. Annu. Rev. Fluid Mech. 29 (1997), 327371.10.1146/annurev.fluid.29.1.327CrossRefGoogle Scholar
Maxworthy, T. & Narimousa, S. 1994 Unsteady, turbulent convection into a homogeneous, rotating fluid, with oceanographic applications. J. Phys. Oceanogr. 24 (5), 865887.10.1175/1520-0485(1994)024<0865:UTCIAH>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
MEDOC-Group 1970 Observation of formation of deep water in the Mediterranean Sea, 1969. Nature 227, 10371040.10.1038/2271037a0CrossRefGoogle Scholar
Morton, B.R., Taylor, G.I. & Turner, J.S. 1956 Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. A: Math. Phys. Sci. 234 (1196), 123.Google Scholar
Narimousa, S. 1997 Dynamics of mesoscale vortices generated by turbulent convection at large aspect ratios. J. Geophys. Res.: Oceans 102 (C3), 56155624.10.1029/96JC03546CrossRefGoogle Scholar
Okada, N., Ikeda, M. & Minobe, S. 2004 Numerical experiments of isolated convection under polynya. J. Oceanogr. 60 (6), 927943.10.1007/s10872-005-0002-xCrossRefGoogle Scholar
Pedlosky, J. 1987 Geophysical Fluid Dynamics. Springer.10.1007/978-1-4612-4650-3CrossRefGoogle Scholar
Porco, C.C., et al. 2006 Cassini observes the active south pole of Enceladus. Science 311 (5766), 13931401.10.1126/science.1123013CrossRefGoogle ScholarPubMed
Pressel, K.G., Mishra, S., Schneider, T., Kaul, C.M. & Tan, Z. 2017 Numerics and subgrid‐scale modeling in large eddy simulations of stratocumulus clouds. J. Adv. Model. Earth Syst. 9 (2), 13421365.10.1002/2016MS000778CrossRefGoogle ScholarPubMed
Ramadhan, A., Wagner, G., Hill, C., Campin, J.-M., Churavy, V., Besard, T., Souza, A., Edelman, A., Ferrari, R. & Marshall, J. 2020 Oceananigans.jl: fast and friendly geophysical fluid dynamics on GPUs. J. Open Source Softw. 5 (53), 2018.10.21105/joss.02018CrossRefGoogle Scholar
Rouse, H., Shun Yih, C. & Humphreys, H.W. 1952 Gravitational convection from a boundary source. Tellus A: Dyn. Meteorol. Oceanogr. 4 (3), 201210.Google Scholar
Schott, F. & Leaman, K.D. 1991 Observations with moored acoustic Doppler current profilers in the convection regime in the Golfe du Lion. J. Phys. Oceanogr. 21 (4), 558574.10.1175/1520-0485(1991)021<0558:OWMADC>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Schott, F., Visbeck, M. & Fischer, J.C. 1993 Observations of vertical currents and convection in the central Greenland sea during the winter of 1988–1989. J. Geophys. Res.: Oceans 98 (C8), 1440114421.10.1029/93JC00658CrossRefGoogle Scholar
Send, U. & Marshall, J. 1995 Integral effects of deep convection. J. Phys. Oceanogr. 25 (5), 855872.10.1175/1520-0485(1995)025<0855:IEODC>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Shu, C.-W. 2009 High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51 (1), 82126.10.1137/070679065CrossRefGoogle Scholar
Silvestri, S., Wagner, G.L., Campin, J‐M., Constantinou, N.C., Hill, C.N., Souza, A.Ferrari, R. 2024 A new WENO-based momentum advection scheme for simulations of ocean mesoscale turbulence. J. Adv. Model. Earth Syst. 16 (7), e2023MS004130.10.1029/2023MS004130CrossRefGoogle Scholar
Speer, K.G. & Marshall, J. 1995 The growth of convective plumes at seafloor hot springs. J. Mar. Res.  53, 10251057.10.1357/0022240953212972CrossRefGoogle Scholar
Stone, P.H. 1968 Some properties of Hadley regimes on rotating and non-rotating planets. J. Atmos. Sci. 25 (4), 644657.10.1175/1520-0469(1968)025<0644:SPOHRO>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Stone, P.H. 1972 A simplified radiative-dynamical model for the static stability of rotating atmospheres. J. Atmos. Sci. 29 (3), 405418.10.1175/1520-0469(1972)029<0405:ASRDMF>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Sutherland, B.R. et al. 2021 Plumes in rotating fluid and their transformation into tornados. J. Fluid Mech. 924, A15.10.1017/jfm.2021.618CrossRefGoogle Scholar
Thomas, P.C., Tajeddine, R., Tiscareno, M.S., Burns, J.A., Joseph, J., Loredo, T.J., Helfenstein, P. & Porco, C. 2016 Enceladus’s measured physical libration requires a global subsurface ocean. Icarus 264, 3747.10.1016/j.icarus.2015.08.037CrossRefGoogle Scholar
Thomson, R.E., Delaney, J.R., McDuff, R.E., Janecky, D.R. & McClain, J.S. 1992 Physical characteristics of the Endeavour Ridge hydrothermal plume during July 1988. Earth Planet. Sci. Lett. 111 (1), 141154.10.1016/0012-821X(92)90175-UCrossRefGoogle Scholar
Turner, J.S. 1969 Buoyant plumes and thermals. Annu. Rev. Fluid Mech. 1, 2944.10.1146/annurev.fl.01.010169.000333CrossRefGoogle Scholar
Turner, J.S. 1973 Buoyancy Effects in Fluids. Cambridge University Press.10.1017/CBO9780511608827CrossRefGoogle Scholar
Vance, S. & Goodman, J. 2009 Oceanography of an ice-covered moon. (ed. R.T. Pappalardo, W.B. McKinnon & K.K. Khurana). University of Arizona Press.Google Scholar
Varekamp, J.C. & Rowe, G.L. 1997 Exotic fluids in the exosphere: when Hades meets Apollo. Eos Trans. AGU, 78 (23), 237238.10.1029/97EO00157CrossRefGoogle Scholar
Visbeck, M., Marshall, J. & Jones, H. 1996 Dynamics of isolated convective regions in the ocean. J. Phys. Oceanogr. 26 (9), 17211734.10.1175/1520-0485(1996)026<1721:DOICRI>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Ward, D.R. 2022 Unifying laminar and turbulent dynamics of plumes. PhD thesis, University of Leeds, England.Google Scholar
Weil, J.C. 1988 Plume rise. In Lectures on Air Pollution Modeling. American Meteorological Society.Google Scholar
Wüest, A. & Carmack, E. 2000 A priori estimates of mixing and circulation in the hard-to-reach water body of Lake Vostok. Ocean Model. 2 (1), 2943.10.1016/S1463-5003(00)00007-XCrossRefGoogle Scholar
Yamamoto, H., Cenedese, C. & Caulfield, C.P. 2011 Laboratory experiments on two coalescing axisymmetric turbulent plumes in a rotating fluid. Phys. Fluids 23 (5), 056601.10.1063/1.3584134CrossRefGoogle Scholar
Yang, J., Peltier, W.R. & Hu, Y. 2012 The initiation of modern ‘soft snowball’ and ‘hard snowball’ climates in CCSM3. Part II: Climate dynamic feedbacks. J. Clim. 25 (8), 27372754.10.1175/JCLI-D-11-00190.1CrossRefGoogle Scholar
Zeng, Y. & Jansen, M.F. 2021 Ocean circulation on Enceladus with a high- versus low-salinity ocean. Planet. Sci. J. 2 (4), 151.10.3847/PSJ/ac1114CrossRefGoogle Scholar
Supplementary material: File

Wang et al. supplementary material

Wang et al. supplementary material
Download Wang et al. supplementary material(File)
File 13.7 MB