Skip to main content Accessibility help
×
Home
Hostname: page-component-7f7b94f6bd-dwjtz Total loading time: 0.233 Render date: 2022-07-01T06:19:40.084Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Fluidization of 1204 spheres: simulation and experiment

Published online by Cambridge University Press:  30 January 2002

T.-W. PAN
Affiliation:
Department of Mathematics, University of Houston, Houston, TX 77204, USA
D. D. JOSEPH
Affiliation:
Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55454, USA
R. BAI
Affiliation:
Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55454, USA
R. GLOWINSKI
Affiliation:
Department of Mathematics, University of Houston, Houston, TX 77204, USA
V. SARIN
Affiliation:
Department of Computer Sciences, Texas A&M University, College Station, TX 77843, USA

Abstract

In this paper we study the fluidization of 1204 spheres at Reynolds numbers in the thousands using the method of distributed Lagrange multipliers. The results of the simulation are compared with an experiment. This is the first direct numerical simulation of a fluidized bed at the finite Reynolds numbers encountered in applications. The simulations are processed to give straight lines in log–log plots leading to power laws as in the celebrated experimental correlations of Richardson & Zaki (1954). The numerical method allows the first direct calculation of the slip velocity and other averaged values used in two-fluid continuum models. The computation and the experiment show that a single particle may be in balance with respect to weight and drag for an interval of fluidizing velocities; the expectation that the fluidizing velocity is unique is not realized. The numerical method reveals that the dynamic pressure decreases slowly with the fluidizing velocity. Tentative interpretations of these new results are discussed.

Type
Research Article
Copyright
© 2002 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
116
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Fluidization of 1204 spheres: simulation and experiment
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Fluidization of 1204 spheres: simulation and experiment
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Fluidization of 1204 spheres: simulation and experiment
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *