Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T13:42:08.770Z Has data issue: false hasContentIssue false

Freak wave in a two-dimensional directional wavefield with bottom topography change. Part 1. Normal incidence wave

Published online by Cambridge University Press:  17 March 2023

Zuorui Lyu
Affiliation:
Coastal Engineering Laboratory, Department of Civil Engineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
Nobuhito Mori*
Affiliation:
Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan Swansea University, Bay Campus, Skewen, Swansea SA1 8EN, UK
Hiroaki Kashima
Affiliation:
Coastal and Ocean Engineering Department, Port and Airport Research Institute, 3-1-1 Nagase, Yokosuka, Kanagawa 239-0826, Japan
*
Email address for correspondence: mori@oceanwave.jp

Abstract

In the propagation and evolution of sea waves, previous studies pointed out that the occurrence of the freak wave height is significantly related to the quasi-resonant four-wave interaction in the modulated waves. From numerical--experimental study over an uneven bottom, the nonlinear effect caused by the bathymetry change also contributes to the occurrence of extreme events in unidirectional waves. To comprehensively analyse the two-dimensional wavefield, this study develops an evolution model for a directional random wavefield based on the depth-modified nonlinear Schrödinger equation, which considers the nonlinear resonant interactions and the wave shoaling the shallow water. Through Monte Carlo simulation, we discuss the directional effect on the four-wave interaction in the wave train and the maximum wave height distribution from deep to shallow water with a slow varying slope. The numerical result indicates that the directional spreading has a dispersion effect on the freak wave height. In a shallow-water environment, this effect becomes weak, and the bottom topography change is the main influencing factor in the wave evolution.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alber, I. & Saffman, P. 1978 Stability of random nonlinear deep-water waves with finite bandwidth spectra. T.R.W., Defense and Space System Group Tech, Rep. 31326-6035-RU-00.Google Scholar
Banner, M.L. & Young, I.R. 1994 Modeling spectral dissipation in the evolution of wind waves. J. Phys. Oceanogr. 24 (7), 15501571.2.0.CO;2>CrossRefGoogle Scholar
Benjamin, T.B. 1967 Instability of periodic wavetrains in nonlinear dispersive systems. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 299 (1456), 5976.Google Scholar
Benney, D.J. & Roskes, G.J. 1969 Wave instabilities. Stud. Appl. Maths 48 (4), 377385.CrossRefGoogle Scholar
Bolles, C.T., Speer, K. & Moore, M.N.J. 2019 Anomalous wave statistics induced by abrupt depth change. Phys. Rev. Fluids 4 (1), 011801.CrossRefGoogle Scholar
Davey, A. & Stewartson, K. 1974 On three-dimensional packets of surface waves. Proc. R. Soc. Lond. A, Math. Phys. Sci. 338 (1613), 101110.Google Scholar
Djordjevié, V.D. & Redekopp, L.G. 1978 On the development of packets of surface gravity waves moving over an uneven bottom. Z. Angew. Math. Phys. 29 (6), 950962.CrossRefGoogle Scholar
Draper, L. 1965 ‘Freak’ ocean waves. Mar. Observer 35, 193195.Google Scholar
Ewans, K.C. 1998 Observations of the directional spectrum of fetch-limited waves. J. Phys. Oceanogr. 28 (3), 495512.2.0.CO;2>CrossRefGoogle Scholar
Forristall, G.Z. & Ewans, K.C. 1998 Worldwide measurements of directional wave spreading. J. Atmos. Ocean. Technol. 15 (2), 440469.2.0.CO;2>CrossRefGoogle Scholar
Goda, Y. 1970 Numerical experiments on wave statistics with spectral simulation. Rep. Port Harbour Res. Inst. 9, 357.Google Scholar
Goda, Y. 2000 Random Seas and Design of Maritime Structures, 2nd edn. World Scientific.CrossRefGoogle Scholar
Gramstad, O. & Trulsen, K. 2007 Influence of crest and group length on the occurrence of freak waves. J. Fluid Mech. 582, 463472.CrossRefGoogle Scholar
Gramstad, O., Zeng, H., Trulsen, K. & Pedersen, G.K. 2013 Freak waves in weakly nonlinear unidirectional wave trains over a sloping bottom in shallow water. Phys. Fluids 25 (12), 122103.CrossRefGoogle Scholar
Hasimoto, H. & Ono, H. 1972 Nonlinear modulation of gravity waves. J. Phys. Soc. Japan 33 (3), 805811.CrossRefGoogle Scholar
Janssen, P.A.E.M. 2003 Nonlinear four-wave interactions and freak waves. J. Phys. Oceanogr. 33 (4), 863884.2.0.CO;2>CrossRefGoogle Scholar
Janssen, P.A.E.M. & Bidlot, J.R. 2009 On the extension of the freak wave warning system and its verification. Memo. 588. European Centre for Medium-Range Weather Forecasts.Google Scholar
Kashima, H., Hirayama, K. & Mori, N. 2014 Estimation of freak wave occurrence from deep to shallow water regions. Coast. Engng Proc. 1 (34), 36.CrossRefGoogle Scholar
Kashima, H. & Mori, N. 2019 Aftereffect of high-order nonlinearity on extreme wave occurrence from deep to intermediate water. Coast. Engng 153, 103559.CrossRefGoogle Scholar
Kimmoun, O., Hsu, H.-C., Hoffmann, N. & Chabchoub, A. 2021 Experiments on unidirectional and nonlinear wave group shoaling. Ocean Dyn. 71 (11), 11051112.CrossRefGoogle Scholar
Lawrence, C., Trulsen, K. & Gramstad, O. 2021 Statistical properties of wave kinematics in long-crested irregular waves propagating over non-uniform bathymetry. Phys. Fluids 33 (4), 046601.CrossRefGoogle Scholar
Lawrence, C., Trulsen, K. & Gramstad, O. 2022 Extreme wave statistics of surface elevation and velocity field of gravity waves over a two-dimensional bathymetry. J. Fluid Mech. 939, A41.CrossRefGoogle Scholar
Li, Y., Draycott, S., Zheng, Y., Lin, Z., Adcock, T.A.A. & Bremer, T.S. 2021 Why rogue waves occur atop abrupt depth transitions. J. Fluid Mech. 919, R5.CrossRefGoogle Scholar
Liu, P.L.F. & Dingemans, M.W. 1989 Derivation of the third-order evolution equations for weakly nonlinear water waves propagating over uneven bottoms. Wave Motion 11 (1), 4164.CrossRefGoogle Scholar
Longuet-Higgins, M. 1963 The effect of nonlinearities on statistical distributions in the theory of sea waves. J. Fluid Mech. 17 (3), 459480.CrossRefGoogle Scholar
Lyu, Z., Mori, N. & Kashima, H. 2021 Freak wave in high-order weakly nonlinear wave evolution with bottom topography change. Coast. Engng 167, 103918.CrossRefGoogle Scholar
Ma, Y., Dong, G. & Ma, X. 2014 Experimental study of statistics of random waves propagating over a bar. Coast. Engng Proc. 34, 30.CrossRefGoogle Scholar
Majda, A.J., Moore, M.N.J. & Qi, D. 2019 Statistical dynamical model to predict extreme events and anomalous features in shallow water waves with abrupt depth change. Proc. Natl Acad. Sci. 116 (10), 39823987.CrossRefGoogle ScholarPubMed
McLean, J.W., Ma, Y.C., Martin, D.U., Saffman, P.G. & Yuen, H.C. 1981 Three-dimensional instability of finite-amplitude water waves. Phys. Rev. Lett. 46 (13), 817820.CrossRefGoogle Scholar
Mei, C.C. & Benmoussa, C. 1984 Long waves induced by short-wave groups over an uneven bottom. J. Fluid Mech. 139, 219235.CrossRefGoogle Scholar
Mendes, S., Scotti, A., Brunetti, M. & Kasparian, J. 2022 Non-homogeneous analysis of rogue wave probability evolution over a shoal. J. Fluid Mech. 939, A25.CrossRefGoogle Scholar
Mori, N. & Janssen, P.A.E.M. 2006 On kurtosis and occurrence probability of freak waves. J. Phys. Oceanogr. 36 (7), 14711483.CrossRefGoogle Scholar
Mori, N., Onorato, M. & Janssen, P.A.E.M. 2011 On the estimation of the kurtosis in directional sea states for freak wave forecasting. J. Phys. Oceanogr. 41 (8), 14841497.CrossRefGoogle Scholar
Mori, N., Onorato, M., Janssen, P.A.E.M., Osborne, A.R. & Serio, M. 2007 On the extreme statistics of long-crested deep-water waves: theory and experiments. J. Geophys. Res: Oceans 112, C09011.CrossRefGoogle Scholar
Næss, A. 1985 The joint crossing frequency of stochastic processes and its application to wave theory. Appl. Ocean Res. 7 (1), 3550.CrossRefGoogle Scholar
Nikolkina, I. & Didenkulova, I. 2011 Rogue waves in 2006–2010. Nat. Hazards Earth Syst. Sci. 11 (11), 29132924.CrossRefGoogle Scholar
Onorato, M. et al. 2009 a Statistical properties of mechanically generated surface gravity waves: a laboratory experiment in a three-dimensional wave basin. J. Fluid Mech. 627, 235257.CrossRefGoogle Scholar
Onorato, M. et al. 2009 b Statistical properties of directional ocean waves: the role of the modulational instability in the formation of extreme events. Phys. Rev. Lett. 102 (11), 114502.CrossRefGoogle ScholarPubMed
Peregrine, D.H. 1983 Water waves, nonlinear Schrödinger equations and their solutions. ANZIAM J. 25 (1), 1643.Google Scholar
Sergeeva, A., Pelinovsky, E. & Talipova, T. 2011 Nonlinear random wave field in shallow water: variable Korteweg-de Vries framework. Nat. Hazards Earth Syst. Sci. 11 (2), 323330.CrossRefGoogle Scholar
Trulsen, K., Raustøl, A., Jorde, S. & Rye, L. 2020 Extreme wave statistics of long-crested irregular waves over a shoal. J. Fluid Mech. 882, R2.CrossRefGoogle Scholar
Trulsen, K., Zeng, H. & Gramstad, O. 2012 Laboratory evidence of freak waves provoked by non-uniform bathymetry. Phys. Fluids 24 (9), 097101.CrossRefGoogle Scholar
Turpin, F.-M., Benmoussa, C. & Mei, C.C. 1983 Effects of slowly varying depth and current on the evolution of a Stokes wavepacket. J. Fluid Mech. 132, 123.CrossRefGoogle Scholar
Viotti, C. & Dias, F. 2014 Extreme waves induced by strong depth transitions: fully nonlinear results. Phys. Fluids 26 (5), 051705.CrossRefGoogle Scholar
Waseda, T. 2006 Impact of directionality on the extreme wave occurrence in a discrete random wave system. In Proceedings of 9th International Workshop on Wave Hindcasting and Forecasting, Victoria, Canada, p. 8. Environment Canada.Google Scholar
Waseda, T., Kinoshita, T. & Tamura, H. 2009 Evolution of a random directional wave and freak wave occurrence. J. Phys. Oceanogr. 39, 621639.CrossRefGoogle Scholar
Yuen, H. & Lake, B. 1982 Nonlinear dynamics of deep-water gravity waves. Adv. Appl. Mech. 22, 67229.CrossRefGoogle Scholar
Zakharov, V.E. 1968 Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9 (2), 190194.CrossRefGoogle Scholar
Zeng, H. & Trulsen, K. 2012 Evolution of skewness and kurtosis of weakly nonlinear unidirectional waves over a sloping bottom. Nat. Hazards Earth Syst. Sci. 12 (3), 631.CrossRefGoogle Scholar
Zhang, J., Michel Benoit, M., Kimmoun, O., Chabchoub, A. & Hsu, H.-C. 2019 Statistics of extreme waves in coastal waters: large scale experiments and advanced numerical simulations. Fluids 4 (2), 99.CrossRefGoogle Scholar
Zheng, Y., Lin, Z., Li, Y., Adcock, T.A.A., Li, Y. & Bremer, T.S. 2020 Fully nonlinear simulations of unidirectional extreme waves provoked by strong depth transitions: the effect of slope. Phys. Rev. Fluids 5 (6), 064804.CrossRefGoogle Scholar
Supplementary material: PDF

Lyu et al. supplementary material

Figures S1-S8

Download Lyu et al. supplementary material(PDF)
PDF 3.1 MB