Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-16T12:03:15.964Z Has data issue: false hasContentIssue false

Generalised quasilinear approximations of turbulent channel flow. Part 2. Spanwise triadic scale interactions

Published online by Cambridge University Press:  30 June 2022

Carlos G. Hernández*
Affiliation:
Department of Aeronautics, Imperial College London, South Kensington, London SW7 2AZ, UK
Qiang Yang
Affiliation:
State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Centre, Mianyang 621000, PR China
Yongyun Hwang
Affiliation:
Department of Aeronautics, Imperial College London, South Kensington, London SW7 2AZ, UK
*
Email address for correspondence: cg1116@imperial.ac.uk

Abstract

Continuing from Part 1 (Hernández et al., J. Fluid Mech., vol. 936, 2022, A33), a generalised quasilinear (GQL) approximation is studied in turbulent channel flow using a flow decomposition defined with spanwise Fourier modes: the flow is decomposed into a set of low-wavenumber spanwise Fourier modes and the rest high-wavenumber modes. This decomposition leads to the nonlinear low-wavenumber group that supports the self-sustaining process within the given integral length scales, whereas the linearised high-wavenumber group is not able to do so, unlike the GQL models in Part 1, which place a minimal mathematical description for the self-sustaining process across all integral scales. Despite the important physical difference, it is shown that the GQL models in this study share some similarities with those in Part 1, i.e. the reduced multi-scale behaviour and anisotropic turbulent fluctuations. Furthermore, despite not being able to support the self-sustaining process in the high-wavenumber group, the GQL models in the present study are found to reproduce some key statistical features in the high-wavenumber group solely through the ‘scattering’ mechanism proposed by previous studies. Finally, using the nature of the GQL approximation, a further set of numerical experiments suppressing certain triadic nonlinear interactions are carried out. This unveils some key roles played by certain types of triadic interactions, including energy cascade and inverse energy transfer in the near-wall region. In particular, the inhibition of inverse energy transfer in the spanwise direction leads to suppression of the near-wall positive turbulent transport at large scales.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agostini, L. & Leschziner, M. 2016 Predicting the response of small-scale near-wall turbulence to large-scale outer motions. Phys. Fluids 28 (1), 015107.10.1063/1.4939712CrossRefGoogle Scholar
del Alamo, J.C. & Jiménez, J. 2003 Spectra of the very large anisotropic scales in turbulent channels. Phys. Fluids 15 (6), L41L44.10.1063/1.1570830CrossRefGoogle Scholar
Child, A., Hollerbach, R., Marston, B. & Tobias, S. 2016 Generalised quasilinear approximation of the helical magnetorotational instability. J. Plasma Phys. 82 (3), 905820302.10.1017/S0022377816000556CrossRefGoogle Scholar
Cho, M., Hwang, Y. & Choi, H. 2018 Scale interactions and spectral energy transfer in turbulent channel flow. J. Fluid Mech. 854, 474504.CrossRefGoogle Scholar
Constantinou, N.C. 2015 Formation of large-scale structures by turbulence in rotating planets. PhD thesis, National and Kapodistrian University of Athens, Athens.Google Scholar
Doohan, P., Bengana, Y., Yang, Q., Willis, A.P. & Hwang, Y. 2021 a Multi-scale state space and travelling waves in wall-bounded turbulence (under review).Google Scholar
Doohan, P., Willis, A.P. & Hwang, Y. 2019 Shear stress-driven flow: the state space of near-wall turbulence at infinite friction Reynolds number. J. Fluid Mech. 874, 606638.10.1017/jfm.2019.472CrossRefGoogle Scholar
Doohan, P., Willis, A.P. & Hwang, Y. 2021 b Minimal multi-scale dynamics of near-wall turbulence. J. Fluid Mech. 913, A8.10.1017/jfm.2020.1182CrossRefGoogle Scholar
Duvvuri, S. & McKeon, B.J. 2015 Triadic scale interactions in a turbulent boundary layer. J. Fluid Mech. 767, R4.10.1017/jfm.2015.79CrossRefGoogle Scholar
Farrell, B.F. & Ioannou, P.J. 2012 Dynamics of streamwise rolls and streaks in turbulent wall-bounded shear flow. J. Fluid Mech. 708, 149196.CrossRefGoogle Scholar
Farrell, B.F., Ioannou, P.J., Jiménez, J., Constantinou, N.C., Lozano-Durán, A. & Nikolaidis, M.-A. 2016 A statistical state dynamics-based study of the structure and mechanism of large-scale motions in plane Poiseuille flow. J. Fluid Mech. 809, 290315.10.1017/jfm.2016.661CrossRefGoogle Scholar
Farrell, B.F., Gayme, D.F. & Ioannou, P.J. 2017 A statistical state dynamics approach to wall turbulence. Phil. Trans. R. Soc. Lond. A 375, 20160081.Google ScholarPubMed
Farrell, B.F. & Ioannou, P.J. 2003 Structural stability of turbulent jets. J. Atmos. Sci. 60, 21012118.2.0.CO;2>CrossRefGoogle Scholar
Farrell, B.F. & Ioannou, P.J. 2007 Structure and spacing of jets in barotropic turbulence. J. Atmos. Sci. 64 (10), 36523665.CrossRefGoogle Scholar
Flores, O. & Jiménez, J. 2010 Hierarchy of minimal flow units in the logarithmic layer. Phys. Fluids 22 (7), 071704.CrossRefGoogle Scholar
Flores, O., Jiménez, J. & Del Álamo, J.C. 2007 Vorticity organization in the outer layer of turbulent channels with disturbed walls. J. Fluid Mech. 591, 145154.10.1017/S0022112007008506CrossRefGoogle Scholar
de Giovanetti, M., Hwang, Y. & Choi, H. 2016 Skin-friction generation by attached eddies in turbulent channel flow. J. Fluid Mech. 808, 511538.10.1017/jfm.2016.665CrossRefGoogle Scholar
de Giovanetti, M., Sung, H.J. & Hwang, Y. 2017 Streak instability in turbulent channel flow: the seeding mechanism of large-scale motions. J. Fluid Mech. 832, 483513.CrossRefGoogle Scholar
Hamilton, J.M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.CrossRefGoogle Scholar
Hernández, C.G. & Hwang, Y. 2020 Spectral energetics of a quasilinear approximation in uniform shear turbulence. J. Fluid Mech. 904, A11.CrossRefGoogle Scholar
Hernández, C.G., Yang, Q. & Hwang, Y. 2022 Generalised quasilinear approximations of turbulent channel flow: Part 1. Streamwise nonlinear energy transfer. J. Fluid Mech. 936, A33.CrossRefGoogle Scholar
Herring, J.R. 1963 Investigation of problems in thermal convection. J. Atmos. Sci. 20 (4), 325338.2.0.CO;2>CrossRefGoogle Scholar
Herring, J.R. 1964 Investigation of problems in thermal convection: rigid boundaries. J. Atmos. Sci. 21 (3), 277290.2.0.CO;2>CrossRefGoogle Scholar
Herring, J.R. 1966 Some analytic results in the theory of thermal convection. J. Atmos. Sci. 23 (6), 672677.2.0.CO;2>CrossRefGoogle Scholar
Hoyas, S. & Jiménez, J. 2008 Reynolds number effects on the Reynolds-stress budgets in turbulent channels. Phys. Fluids 20 (10), 101511.CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. Lond. A 365 (1852), 647664.Google ScholarPubMed
Hwang, Y. 2013 Near-wall turbulent fluctuations in the absence of wide outer motions. J. Fluid Mech. 723, 264288.CrossRefGoogle Scholar
Hwang, Y. 2015 Statistical structure of self-sustaining attached eddies in turbulent channel flow. J. Fluid Mech. 767, 254289.CrossRefGoogle Scholar
Hwang, Y. & Bengana, Y. 2016 Self-sustaining process of minimal attached eddies in turbulent channel flow. J. Fluid Mech. 795, 708738.10.1017/jfm.2016.226CrossRefGoogle Scholar
Hwang, Y. & Cossu, C. 2010 a Linear non-normal energy amplification of harmonic and stochastic forcing in the turbulent channel flow. J. Fluid Mech. 664, 5173.10.1017/S0022112010003629CrossRefGoogle Scholar
Hwang, Y. & Cossu, C. 2010 b Self-sustained process at large scales in turbulent channel flow. Phys. Rev. Lett. 105, 044505.10.1103/PhysRevLett.105.044505CrossRefGoogle ScholarPubMed
Hwang, Y. & Cossu, C. 2011 Self-sustained processes in the logarithmic layer of turbulent channel flows. Phys. Fluids 23 (6), 061702.10.1063/1.3599157CrossRefGoogle Scholar
Hwang, Y. & Eckhardt, B. 2020 Attached eddy model revisited using a minimal quasi-linear approximation. J. Fluid Mech. 894, A23.CrossRefGoogle Scholar
Hwang, Y. & Lee, M. 2020 The mean logarithm emerges with self-similar energy balance. J. Fluid Mech. 903, R6.CrossRefGoogle Scholar
Jiménez, J. & Moin, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213240.10.1017/S0022112091002033CrossRefGoogle Scholar
Jiménez, J. & Pinelli, A. 1999 The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335359.CrossRefGoogle Scholar
Jovanović, M.R. 2021 From bypass transition to flow control and data-driven turbulence modeling: an input–output viewpoint. Annu. Rev. Fluid Mech. 53 (1), 311345.CrossRefGoogle Scholar
Kawata, T. & Alfredsson, P.H. 2018 Inverse interscale transport of the Reynolds shear stress in plane Couette turbulence. Phys. Rev. Lett. 120, 244501.CrossRefGoogle ScholarPubMed
Kawata, T. & Tsukahara, T. 2021 Scale interactions in turbulent plane Couette flows in minimal domains. J. Fluid Mech. 911, A55.CrossRefGoogle Scholar
Kline, S.J., Reynolds, W.C., Schraub, F.A. & Runstadler, P.W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30 (4), 741773.CrossRefGoogle Scholar
Kovasznay, L.S.G., Kibens, V. & Blackwelder, R.F. 1970 Large-scale motion in the intermittent region of a turbulent boundary layer. J. Fluid Mech. 41 (2), 283325.CrossRefGoogle Scholar
Lee, M.K. & Moser, R.D. 2019 Spectral analysis of the budget equation in turbulent channel flows at high Reynolds number. J. Fluid Mech. 860, 886938.CrossRefGoogle Scholar
Lozano-Durán, A., Constantinou, N.C., Nikolaidis, M.-A. & Karp, M. 2021 Cause-and-effect of linear mechanisms sustaining wall turbulence. J. Fluid Mech. 914, A8.CrossRefGoogle Scholar
Malkus, W.V.R. 1954 The heat transport and spectrum of thermal turbulence. Phil. Trans. R. Soc. Lond. A 225 (1161), 196212.Google Scholar
Malkus, W.V.R. 1956 Outline of a theory of turbulent shear flow. J. Fluid Mech. 1 (5), 521539.CrossRefGoogle Scholar
Mantič-Lugo, V., Arratia, C. & Gallaire, F. 2014 Self-consistent mean flow description of the nonlinear saturation of the vortex shedding in the cylinder wake. Phys. Rev. Lett. 113, 084501.CrossRefGoogle ScholarPubMed
Mantič-Lugo, V. & Gallaire, F. 2016 Saturation of the response to stochastic forcing in two-dimensional backward-facing step flow: a self-consistent approximation. Phys. Rev. Fluids 1, 083602.CrossRefGoogle Scholar
Marston, J.B., Chini, G.P. & Tobias, S.M. 2016 Generalized quasilinear approximation: application to zonal jets. Phys. Rev. Lett. 116, 214501.CrossRefGoogle ScholarPubMed
Marston, J.B., Conover, E. & Tobias, S. 2008 Statistics of an unstable barotropic jet from a cumulant expansion. J. Atmos. Sci. 65 (6), 19551966.10.1175/2007JAS2510.1CrossRefGoogle Scholar
Mathis, R., Hutchins, N. & Marusic, I. 2009 Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311337.CrossRefGoogle Scholar
McKeon, B.J. 2017 The engine behind (wall) turbulence: perspectives on scale interactions. J. Fluid Mech. 817, P1.CrossRefGoogle Scholar
McKeon, B.J. & Sharma, A.S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.10.1017/S002211201000176XCrossRefGoogle Scholar
Mizuno, Y. 2016 Spectra of energy transport in turbulent channel flows for moderate Reynolds numbers. J. Fluid Mech. 805, 171187.10.1017/jfm.2016.564CrossRefGoogle Scholar
Moarref, R., Sharma, A.S., Tropp, J.A. & McKeon, B.J. 2013 Model-based scaling of the streamwise energy density in high-Reynolds-number turbulent channels. J. Fluid Mech. 734, 275316.10.1017/jfm.2013.457CrossRefGoogle Scholar
Park, J., Hwang, Y. & Cossu, C. 2011 On the stability of large-scale streaks in turbulent Couette and Poiseulle flows. C. R. Méc 339 (1), 15.CrossRefGoogle Scholar
Pausch, M., Yang, Q., Hwang, Y. & Eckhardt, B. 2019 Quasilinear approximation for exact coherent states in parallel shear flows. Fluid Dyn. Res. 51 (1), 011402.CrossRefGoogle Scholar
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.CrossRefGoogle Scholar
Skouloudis, N. & Hwang, Y. 2021 Scaling of turbulence intensities up to $Re_{{\tau }}=10^{6}$ with a resolvent-based quasilinear approximation. Phys. Rev. Fluids 6, 034602.10.1103/PhysRevFluids.6.034602CrossRefGoogle Scholar
Thomas, V.L., Farrell, B.F., Ioannou, P.J. & Gayme, D.F. 2015 A minimal model of self-sustaining turbulence. Phys. Fluids 27 (10), 105104.CrossRefGoogle Scholar
Thomas, V.L., Lieu, B.K., Jovanović, M.R., Farrell, B.F., Ioannou, P.J. & Gayme, D.F. 2014 Self-sustaining turbulence in a restricted nonlinear model of plane Couette flow. Phys. Fluids 26 (10), 105112.CrossRefGoogle Scholar
Tobias, S.M. & Marston, J.B. 2013 Direct statistical simulation of out-of-equilibrium jets. Phys. Rev. Lett. 110, 104502.CrossRefGoogle ScholarPubMed
Tobias, S.M. & Marston, J.B. 2017 Three-dimensional rotating Couette flow via the generalised quasilinear approximation. J. Fluid Mech. 810, 412428.CrossRefGoogle Scholar
Townsend, A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.Google Scholar
Vreman, A.W. 2004 An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys. Fluids 16 (10), 36703681.10.1063/1.1785131CrossRefGoogle Scholar
Waleffe, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9 (4), 883900.CrossRefGoogle Scholar
Zare, A., Jovanović, M.R. & Georgiou, T.T. 2017 Colour of turbulence. J. Fluid Mech. 812, 636680.CrossRefGoogle Scholar
Zhang, C. & Chernyshenko, S.I. 2016 Quasisteady quasihomogeneous description of the scale interactions in near-wall turbulence. Phys. Rev. Fluids 1, 014401.10.1103/PhysRevFluids.1.014401CrossRefGoogle Scholar