Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-hcslb Total loading time: 0.308 Render date: 2023-01-30T02:42:03.982Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Geometry and clustering of intense structures in isotropic turbulence

Published online by Cambridge University Press:  12 August 2004

F. MOISY
Affiliation:
Laboratoire FAST, Bât. 502, 91405 Orsay Cedex, France
J. JIMÉNEZ
Affiliation:
School of Aeronautics, U. Politécnica, 28040 Madrid, Spain Centre for Turbulence Research, Stanford University, CA 94305 USA

Abstract

The regions associated with high levels of vorticity and energy dissipation are studied in numerically simulated isotropic turbulence at $Re_\lambda = 168$. Their geometry and spatial distribution are characterized by means of box-counting methods. No clear scaling is observed for the box counts of intense strain rate and vorticity sets, presumably due to the limited inertial range, but it is shown that, even in that case, the box-counting method can be refined to characterize the shape of the intense structures themselves, as well as their spatial distribution. The fractal dimension of the individual vorticity structures, $D_\omega \rightarrow 1.1 \pm 0.1$, suggests that they tend to form filamentary vortices in the limit of high vorticity threshold. On the other hand, the intense dissipation structures have dimensions $D_{s} \simeq 1.7 \pm 0.1$, with no noticeable dependence on the threshold, suggesting structures in the form of sheets or ribbons. Statistics of the associated aspect ratios for different thresholds support these observations. Finally box counting is used to characterize the spatial distribution of the baricentres of the structures. It is found that the intense structures are not randomly distributed in space, but rather form clusters of inertial-range extent, implying a large-scale organization of the small-scale intermittent structures.

Type
Papers
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
154
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Geometry and clustering of intense structures in isotropic turbulence
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Geometry and clustering of intense structures in isotropic turbulence
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Geometry and clustering of intense structures in isotropic turbulence
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *