Hostname: page-component-758b78586c-t6f8b Total loading time: 0 Render date: 2023-11-29T22:27:10.936Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Geometry of valley growth

Published online by Cambridge University Press:  14 March 2011

Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Department of Physics, Clark University, Worcester, MA 01610, USA
Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Email address for correspondence:


Although amphitheatre-shaped valley heads can be cut by groundwater flows emerging from springs, recent geological evidence suggests that other processes may also produce similar features, thus confounding the interpretations of such valley heads on Earth and Mars. To better understand the origin of this topographic form, we combine field observations, laboratory experiments, analysis of a high-resolution topographic map and mathematical theory to quantitatively characterize a class of physical phenomena that produce amphitheatre-shaped heads. The resulting geometric growth equation accurately predicts the shape of decimetre-wide channels in laboratory experiments, 100 m-wide valleys in Florida and Idaho, and kilometre-wide valleys on Mars. We find that, whenever the processes shaping a landscape favour the growth of sharply protruding features, channels develop amphitheatre-shaped heads with an aspect ratio of π.

Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Abrams, D. M., Lobkovsky, A. E., Petroff, A. P., Straub, K. M., McElroy, B., Mohrig, D. C., Kudrolli, A. & Rothman, D. H. 2009 Growth laws for channel networks incised by groundwater flow. Nature Geosci. 28 (4), 193196.Google Scholar
Bear, J. 1979 Hydraulics of Groundwater. McGraw-Hill.Google Scholar
Ben-Jacob, E., Goldenfeld, N., Langer, J. S. & Schön, G. 1983 Dynamics of interfacial pattern formation. Phys. Rev. Lett. 51 (21), 19301932.Google Scholar
Bensimon, D., Kadanoff, L. P., Liang, S., Shraiman, B. I. & Tang, C. 1986 Viscous flows in two dimensions. Rev. Mod. Phys. 58 (4), 977999.Google Scholar
Brower, R. C., Kessler, D. A., Koplik, J. & Levine, H. 1983 Geometrical approach to moving-interface dynamics. Phys. Rev. Lett. 51 (13), 11111114.Google Scholar
Chanson, H. 1999 The Hydraulics of Open Channel Flow: An Introduction. Edward Arnold/Butterworth-Heinemann.Google Scholar
Combescot, R., Dombre, T., Hakim, V., Pomeau, Y. & Pumir, A. 1986 Shape selection of Saffman-Taylor fingers. Phys. Rev. Lett. 56 (19), 20362039.Google Scholar
Culling, W. E. H. 1960 Analytic theory of erosion. J. Geol. 68, 336344.Google Scholar
Dunne, T. 1980 Formation and controls of channel networks. Prog. Phys. Geogr. 4 (2), 211239.Google Scholar
Higgins, C. G. 1982 Drainage systems developed by sapping on Earth and Mars. Geology 10 (3), 147152.Google Scholar
Howard, A. D. 1988 Groundwater sapping experiments and modeling. In Sapping Features of the Colorado Plateau: A Comparative Planetary Geology Field Guide (ed. Howard, A. D., Kochel, R. C. & Holt, H. R.), NASA SP-491, pp. 7183.Google Scholar
Kardar, M., Parisi, G. & Zhang, Y. C. 1986 Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56 (9), 889892.Google Scholar
Kessler, D. A., Koplik, J. & Levine, H. 1985 Geometrical models of interface evolution. III. Theory of dendritic growth. Phys. Rev. A 31 (3), 17121717.Google Scholar
Kessler, D. A., Koplik, J. & Levine, H. 1986 Dendritic growth in a channel. Phys. Rev. A 34 (6), 49804987.Google Scholar
Laity, J. E. & Malin, M. C. 1985 Sapping processes and the development of theater-headed valley networks on the Colorado Plateau. Geol. Soc. Am. Bull. 96 (2), 203217.Google Scholar
Lamb, M. P., Dietrich, W. E., Aciego, S. M., DePaolo, D. J. & Manga, M. 2008 Formation of Box Canyon, Idaho, by megaflood: implications for seepage erosion on Earth and Mars. Science 320 (5879), 10671070.Google Scholar
Lamb, M. P., Howard, A. D., Johnson, J., Whipple, K. X., Dietrich, W. E. & Perron, J. T. 2006 Can springs cut canyons into rock. J. Geophys. Res. E07002.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1995 Theory of Elasticity, Course of Theoretical Physics, VII, 3rd revised edn., Vol. 7. Butterworth-Heinemann.Google Scholar
Lobkovsky, A. E., Smith, B. E., Kudrolli, A., Mohrig, D. C. & Rothman, D. H. 2007 Erosive dynamics of channels incised by subsurface water flow}. J. Geophys. Res. F03S12.Google Scholar
Malin, M. C. & Carr, M. H. 1999 Groundwater formation of Martian valleys. Nature 397 (6720), 589591.Google Scholar
Marsili, M., Maritan, A., Toigo, F. & Banavar, J. R. 1996 Stochastic growth equations and reparametrization invariance. Rev. Mod. Phys. 68 (4), 963983.Google Scholar
Mullins, W. W. & Sekerka, R. F. 1963 Morphological stability of a particle growing by diffusion or heat flow. J. Appl. Phys. 34, 323329.Google Scholar
Orange, D. L., Anderson, R. S. & Breen, N. A. 1994 Regular canyon spacing in the submarine environment: the link between hydrology and geomorphology. GSA Today 4 (2), 3539.Google Scholar
Pelcé, P. 1988 Dynamics of Curved Fronts. Academic.Google Scholar
Pelcé, P. 2004 New Visions on Form and Growth: Fingered Growth, Dendrites, and Flames. Oxford University Press.Google Scholar
Russell, I. C. 1902 Geology and water resources of the Snake River Plains of Idaho. US Geol. Survey Bull. 199, 1192.Google Scholar
Saffman, P. G. & Taylor, G. I. 1958 The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 245 (1242), 312329.Google Scholar
Schorghofer, N., Jensen, B., Kudrolli, A. & Rothman, D. H. 2004 Spontaneous channelization in permeable ground: theory, experiment, and observation. J. Fluid Mech. 503, 357374.Google Scholar
Schumm, S. A., Boyd, K. F., Wolff, C. G. & Spitz, W. J. 1995 A ground-water sapping landscape in the Florida Panhandle. Geomorphology 12 (4), 281297.Google Scholar
Sharp, R. P. & Malin, M. C. 1975 Channels on Mars. Geol. Soc. Am. Bull. 86 (5), 593609.Google Scholar
Shraiman, B. & Bensimon, D. 1984 Singularities in nonlocal interface dynamics. Phys. Rev. A 30 (5), 28402842.Google Scholar
Wentworth, C. K. 1928 Principles of stream erosion in Hawaii. J. Geol. 36 (5), 385410.Google Scholar
Supplementary material: PDF

Petroff et al. supplementary material


Download Petroff et al. supplementary material(PDF)
PDF 990 KB