Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-2c279 Total loading time: 0.371 Render date: 2023-01-30T00:52:20.512Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Granular collapse in two dimensions

Published online by Cambridge University Press:  17 August 2005

N. J. BALMFORTH
Affiliation:
Departments of Mathematics and Earth and Ocean Science, UBC, Vancouver
R. R. KERSWELL
Affiliation:
Department of Mathematics, University of Bristol, UK

Abstract

An experimental investigation is conducted into the collapse of granular columns inside rectangular channels. The final shape is documented for slumps inside relatively wide channels, and for collapses inside much narrower slots. In both cases, the collapse is initiated by withdrawing a swinging gate or sliding door, and the flow remains fairly two-dimensional. Four different granular media are used; the properties of the materials vary significantly, notably in their angles of friction for basal sliding and internal deformation. If $H$ is the initial height of the column, $h_{\infty}$ the maximum final height of the column and $a$ the initial aspect ratio, then the data suggest that $H/h_{\infty} \,{\sim} a^{0.6}$ in wide channels and $H/h_{\infty} \,{\sim}\, a^{0.5}$ for narrow slots. For the runout, we find that $(l_{\infty}\,{-}\,L)/L \,{\sim}\, a^{0.9\pm 0.1}$ for wide channels, and $(l_{\infty}\,{-}\,L)/L \,{\sim}\, a^{0.65\pm0.05}$ or $l_\infty/L \,{\sim}\, a^{0.55\pm0.05}$ for narrow slots, where $l_{\infty}$ is the maximum runout of the material and $L$ the initial length of the column along the channel ($a\,{:=}\,H/L$). In all cases, the numerical constant of proportionality in these scaling relations shows clear material dependence. In wide slots, there is no obvious universal scaling behaviour of the final profile, but such a behaviour is evident in narrow slots. The experimental results are compared with theoretical results based on a shallow granular-flow model. The qualitative behaviour of the slump in the wide slot is reproduced by the theoretical model. However, there is qualitative disagreement between theory and the experiments in the narrow slot because of the occurrence of secondary surface avalanching.

Type
Papers
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
195
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Granular collapse in two dimensions
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Granular collapse in two dimensions
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Granular collapse in two dimensions
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *