Hostname: page-component-5d59c44645-mrcq8 Total loading time: 0 Render date: 2024-02-26T15:32:54.227Z Has data issue: false hasContentIssue false

The granular jump

Published online by Cambridge University Press:  23 January 2007

J. F. BOUDET
Affiliation:
Centre de Physique Moléculaire Optique et Hertzienne, UMR 5798, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence, France
Y. AMAROUCHENE
Affiliation:
Centre de Physique Moléculaire Optique et Hertzienne, UMR 5798, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence, France
B. BONNIER
Affiliation:
Centre de Physique Moléculaire Optique et Hertzienne, UMR 5798, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence, France
H. KELLAY
Affiliation:
Centre de Physique Moléculaire Optique et Hertzienne, UMR 5798, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence, France

Abstract

When a fluid jet hits a solid surface, a hydraulic jumps occurs. This jump sharply delimits a thin film of liquid from a thicker film. We show here that a granular jet impinging on a solid surface also gives rise to several features reminiscent of the hydraulic jump and we refer to this situation as the granular jump. We describe, in detail, this phenomenon and show that if many of its features can be understood in analogy with the hydraulic jump, others are directly related to the granular nature of the medium and, in particular, the small-scale dynamics of the jump.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amarouchene, Y. & Kellay, H. 2006 Speed of sound from shock fronts in granular flows. Phys. Fluids 18, 031707.Google Scholar
Amarouchene, Y., Boudet, J. F. & Kellay, H. 2001 Dynamic sand dunes. Phys. Rev. Lett. 86, 4286.Google Scholar
Bonnier, B., Boudet, J.-F. & Kellay, H. 2003 Granular flow trapped on an incline: dynamics of the sand pile. Phys. Rev. E 68, 061302.Google Scholar
Bouchaud, J. P., Cates, M. E., Ravi Prakash, J. & Edwards, S. F. 1994 A model for the dynamics of sand pile surfaces. J. Phys. I 4, 1383.Google Scholar
Boudet, J-F., Gauthier, S., Amarouchene, Y. & Kellay, H. 2003 Self-similar dynamic quasi-two-dimensional sand fronts. Phys. Rev. E 67, 010303(R).Google Scholar
Boudet, J. F., Amarouchene, Y., Bonnier, B. & Kellay, H. 2005 Non-aeolian sand ripples. Europhys. Lett. 69, 365.Google Scholar
Bush, J. W. M. & Aristoff, J. M. 2003 The influence of surface tension on the circular hydraulic jump. J. Fluid Mech. 489, 229.Google Scholar
Conway, S. L., Shinbrot, T. & Glasser, J. 2004 A Taylor vortex analogy in granular flows. Nature 431, 433.Google Scholar
Duran, J. 1997 Sables Poudres et Grains. Eyrolles Sciences, Paris.Google Scholar
Garcimartin, A., Maza, D., Ilquimiche, J. L. & Zuriguel, I. 2002 Convective motion in a vibrated granular layer. Phys. Rev. E 65, 031303.Google Scholar
de Gennes, P. G. 1999 Granular matter: a tentative view. Rev. Mod. Phys. 71, 374.Google Scholar
Goldfarb, D., Glasser, B. J. & Shinbrot, T. 2002 Shear instabilites in a granular flow. Nature 415, 302.Google Scholar
Gray, J. M. N. T., Tai, Y.-C. & Noelle, S. 2003 Shock waves, dead zones and particle-free regions in rapid granular free-surface flows. J. Fluid Mech. 491, 161.Google Scholar
Hákonardóttir, K. M. & Hogg, A. J. 2005 Oblique shocks in rapid granular flows. Phys. Fluids 17, 077101.Google Scholar
Jaeger, M., Nagel, S. R. & Behringer, R. P. 1996 Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259.Google Scholar
Kadanoff, L. P. 1999 Built upon sand: theoretical ideas inspired by granular flows. Rev. Mod. Phys. 71, 435.Google Scholar
Liu, A. J. & Nagel, S. R. 1998 Jamming is not just cool anymore. Nature 396, 2122.Google Scholar
Mahadevan, L. & Pomeau, Y. 1999 Propagating fronts on sand pile surfaces. Europhys. Lett. 46, 595.Google Scholar
Melo, F., Umbanhowar, P. & Swinney, H. L. 1995 Hexagons, kinks, and disorder in oscillated granular layers. Phys. Rev. Lett. 75, 38383841.Google Scholar
Middleman, S. 1995 Modeling Axisymetric Flows. Academic.Google Scholar
Nagel, S. R. 1992 Instabilities in a sand pile. Rev. Mod. Phys. 64, 321.Google Scholar
Nicolas, M. 2002 Experimental study of gravity-driven dense suspension jets. Phys. Fluids. 14, 3570.Google Scholar
Pouliquen, O. & Forterre, Y. 2002 Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J. Fluid Mech. 453, 133151.Google Scholar
Rericha, E., Bizon, C., Shattuck, M. D. & Swinney, H. L. 2002 Shocks in supersonic sand. Phys. Rev. Lett. 88, 014302.Google Scholar
Savage, S. B. & Hutter, K. 1989 The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177215.Google Scholar
Staron, L. & Hinch, E. J. 2005 Study of the collapse of granular columns using two dimensional discrete-grain simulation. J. Fluid Mech. 545, 1.Google Scholar
Watson, E. J. 1964 The spread of a liquid jet over a horizontal plane. J. Fluid Mech. 20, 481.Google Scholar
Zuriguel, I., Boudet, J. F., Amarouchene, Y. & Kellay, H. 2005 Role of fluctuation-induced interactions in the axial segregation of granular materials. Phys. Rev. Lett. 95, 258002.Google Scholar