Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-t4qhp Total loading time: 0.371 Render date: 2022-08-18T05:45:10.673Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

The granular jump

Published online by Cambridge University Press:  23 January 2007

J. F. BOUDET
Affiliation:
Centre de Physique Moléculaire Optique et Hertzienne, UMR 5798, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence, France
Y. AMAROUCHENE
Affiliation:
Centre de Physique Moléculaire Optique et Hertzienne, UMR 5798, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence, France
B. BONNIER
Affiliation:
Centre de Physique Moléculaire Optique et Hertzienne, UMR 5798, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence, France
H. KELLAY
Affiliation:
Centre de Physique Moléculaire Optique et Hertzienne, UMR 5798, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence, France

Abstract

When a fluid jet hits a solid surface, a hydraulic jumps occurs. This jump sharply delimits a thin film of liquid from a thicker film. We show here that a granular jet impinging on a solid surface also gives rise to several features reminiscent of the hydraulic jump and we refer to this situation as the granular jump. We describe, in detail, this phenomenon and show that if many of its features can be understood in analogy with the hydraulic jump, others are directly related to the granular nature of the medium and, in particular, the small-scale dynamics of the jump.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amarouchene, Y. & Kellay, H. 2006 Speed of sound from shock fronts in granular flows. Phys. Fluids 18, 031707.CrossRefGoogle Scholar
Amarouchene, Y., Boudet, J. F. & Kellay, H. 2001 Dynamic sand dunes. Phys. Rev. Lett. 86, 4286.CrossRefGoogle ScholarPubMed
Bonnier, B., Boudet, J.-F. & Kellay, H. 2003 Granular flow trapped on an incline: dynamics of the sand pile. Phys. Rev. E 68, 061302.CrossRefGoogle Scholar
Bouchaud, J. P., Cates, M. E., Ravi Prakash, J. & Edwards, S. F. 1994 A model for the dynamics of sand pile surfaces. J. Phys. I 4, 1383.Google Scholar
Boudet, J-F., Gauthier, S., Amarouchene, Y. & Kellay, H. 2003 Self-similar dynamic quasi-two-dimensional sand fronts. Phys. Rev. E 67, 010303(R).CrossRefGoogle Scholar
Boudet, J. F., Amarouchene, Y., Bonnier, B. & Kellay, H. 2005 Non-aeolian sand ripples. Europhys. Lett. 69, 365.CrossRefGoogle Scholar
Bush, J. W. M. & Aristoff, J. M. 2003 The influence of surface tension on the circular hydraulic jump. J. Fluid Mech. 489, 229.CrossRefGoogle Scholar
Conway, S. L., Shinbrot, T. & Glasser, J. 2004 A Taylor vortex analogy in granular flows. Nature 431, 433.CrossRefGoogle Scholar
Duran, J. 1997 Sables Poudres et Grains. Eyrolles Sciences, Paris.Google Scholar
Garcimartin, A., Maza, D., Ilquimiche, J. L. & Zuriguel, I. 2002 Convective motion in a vibrated granular layer. Phys. Rev. E 65, 031303.CrossRefGoogle Scholar
de Gennes, P. G. 1999 Granular matter: a tentative view. Rev. Mod. Phys. 71, 374.CrossRefGoogle Scholar
Goldfarb, D., Glasser, B. J. & Shinbrot, T. 2002 Shear instabilites in a granular flow. Nature 415, 302.CrossRefGoogle Scholar
Gray, J. M. N. T., Tai, Y.-C. & Noelle, S. 2003 Shock waves, dead zones and particle-free regions in rapid granular free-surface flows. J. Fluid Mech. 491, 161.CrossRefGoogle Scholar
Hákonardóttir, K. M. & Hogg, A. J. 2005 Oblique shocks in rapid granular flows. Phys. Fluids 17, 077101.CrossRefGoogle Scholar
Jaeger, M., Nagel, S. R. & Behringer, R. P. 1996 Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259.CrossRefGoogle Scholar
Kadanoff, L. P. 1999 Built upon sand: theoretical ideas inspired by granular flows. Rev. Mod. Phys. 71, 435.CrossRefGoogle Scholar
Liu, A. J. & Nagel, S. R. 1998 Jamming is not just cool anymore. Nature 396, 2122.CrossRefGoogle Scholar
Mahadevan, L. & Pomeau, Y. 1999 Propagating fronts on sand pile surfaces. Europhys. Lett. 46, 595.CrossRefGoogle Scholar
Melo, F., Umbanhowar, P. & Swinney, H. L. 1995 Hexagons, kinks, and disorder in oscillated granular layers. Phys. Rev. Lett. 75, 38383841.CrossRefGoogle ScholarPubMed
Middleman, S. 1995 Modeling Axisymetric Flows. Academic.Google Scholar
Nagel, S. R. 1992 Instabilities in a sand pile. Rev. Mod. Phys. 64, 321.CrossRefGoogle Scholar
Nicolas, M. 2002 Experimental study of gravity-driven dense suspension jets. Phys. Fluids. 14, 3570.CrossRefGoogle Scholar
Pouliquen, O. & Forterre, Y. 2002 Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J. Fluid Mech. 453, 133151.CrossRefGoogle Scholar
Rericha, E., Bizon, C., Shattuck, M. D. & Swinney, H. L. 2002 Shocks in supersonic sand. Phys. Rev. Lett. 88, 014302.CrossRefGoogle Scholar
Savage, S. B. & Hutter, K. 1989 The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177215.CrossRefGoogle Scholar
Staron, L. & Hinch, E. J. 2005 Study of the collapse of granular columns using two dimensional discrete-grain simulation. J. Fluid Mech. 545, 1.CrossRefGoogle Scholar
Watson, E. J. 1964 The spread of a liquid jet over a horizontal plane. J. Fluid Mech. 20, 481.CrossRefGoogle Scholar
Zuriguel, I., Boudet, J. F., Amarouchene, Y. & Kellay, H. 2005 Role of fluctuation-induced interactions in the axial segregation of granular materials. Phys. Rev. Lett. 95, 258002.CrossRefGoogle ScholarPubMed
33
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The granular jump
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

The granular jump
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

The granular jump
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *