Skip to main content Accessibility help
Hostname: page-component-55597f9d44-n4bck Total loading time: 0.36 Render date: 2022-08-12T21:29:54.067Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

High-resolution direct simulation of deep water breaking waves: transition to turbulence, bubbles and droplets production

Published online by Cambridge University Press:  24 May 2022

W. Mostert
Mechanical & Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
S. Popinet
Institut Jean Le Rond d'Alembert, CNRS UMR 7190, Sorbonne Université, Paris, France
L. Deike*
Mechanical & Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA High Meadows Environmental Institute, Princeton University, Princeton, NJ 08544, USA
Email address for correspondence:


We present high-resolution three-dimensional (3-D) direct numerical simulations of breaking waves solving for the two-phase Navier–Stokes equations. We investigate the role of the Reynolds number (Re, wave inertia relative to viscous effects) and Bond number (Bo, wave scale over the capillary length) on the energy, bubble and droplet statistics of strong plunging breakers. We explore the asymptotic regimes at high Re and Bo, and compare with laboratory breaking waves. Energetically, the breaking wave transitions from laminar to 3-D turbulent flow on a time scale that depends on the turbulent Re up to a limiting value $Re_\lambda \sim 100$, consistent with the mixing transition in other canonical turbulent flows. We characterize the role of capillary effects on the impacting jet and ingested main cavity shape and subsequent fragmentation process, and extend the buoyant-energetic scaling from Deike et al. (J. Fluid Mech., vol. 801, 2016, pp. 91–129) to account for the cavity shape and its scale separation from the Hinze scale, $r_H$. We confirm two regimes in the bubble size distribution, $N(r/r_H)\propto (r/r_H)^{-10/3}$ for $r>r_H$, and $\propto (r/r_H)^{-3/2}$ for $r<r_H$. Bubbles are resolved up to one order of magnitude below $r_H$, and we observe a good collapse of the numerical data compared to laboratory breaking waves (Deane & Stokes, Nature, vol. 418 (6900), 2002, pp. 839–844). We resolve droplet statistics at high Bo in good agreement with recent experiments (Erinin et al., Geophys. Res. Lett., vol. 46 (14), 2019, pp. 8244–8251), with a distribution shape close to $N_d(r_d)\propto r_d^{-2}$. The evolution of the droplet statistics appears controlled by the details of the impact process and subsequent splash-up. We discuss velocity distributions for the droplets, finding ejection velocities up to four times the phase speed of the wave, which are produced during the most intense splashing events of the breaking process.

JFM Papers
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Banner, M.L., Barthelemy, X., Fedele, F., Allis, M., Benetazzo, A., Dias, F. & Peirson, W.L. 2014 Linking reduced breaking crest speeds to unsteady nonlinear water wave group behavior. Phys. Rev. Lett. 112 (11), 114502.CrossRefGoogle ScholarPubMed
Banner, M.L. & Peirson, W.L. 2007 Wave breaking onset and strength for two-dimensional deep-water wave groups. J. Fluid Mech. 585, 93.CrossRefGoogle Scholar
Bell, J.B., Colella, P. & Glaz, H.M. 1989 A second-order projection method for the incompressible Navier–Stokes equations. J. Comput. Phys. 85 (2), 257283.CrossRefGoogle Scholar
Berny, A., Deike, L., Séon, T. & Popinet, S. 2020 Role of all jet drops in mass transfer from bursting bubbles. Phys. Rev. Fluids 5 (3), 033605.CrossRefGoogle Scholar
Blenkinsopp, C.E. & Chaplin, J.R. 2007 Void fraction measurements in breaking waves. Proc. R. Soc. A 463 (2088), 31513170.CrossRefGoogle Scholar
Blenkinsopp, C.E. & Chaplin, J.R. 2010 Bubble size measurements in breaking waves using optical fiber phase detection probes. IEEE J. Ocean. Engng 35 (2), 388401.CrossRefGoogle Scholar
Bonmarin, P. 1989 Geometric properties of deep-water breaking waves. J. Fluid Mech. 209, 405433.CrossRefGoogle Scholar
Chan, W.H.R., Johnson, P. & Moin, P. 2020 a The turbulent bubble break-up cascade. Part 1. Theoretical developments. J. Fluid Mech. 912, A42.CrossRefGoogle Scholar
Chan, W.H.R., Johnson, P. & Moin, P. 2020 b The turbulent bubble break-up cascade. Part 2. Numerical simulations of breaking waves. J. Fluid Mech. 912, A43.CrossRefGoogle Scholar
Chen, G., Kharif, C., Zaleski, S. & Li, J. 1999 Two-dimensional Navier–Stokes simulation of breaking waves. Phys. Fluids 11 (1), 121133.CrossRefGoogle Scholar
De Vita, F., Verzicco, R. & Iafrati, A. 2018 Breaking of modulated wave groups: kinematics and energy dissipation processes. J. Fluid Mech. 855, 267298.CrossRefGoogle Scholar
Deane, G.B. & Stokes, M.D. 2002 Scale dependence of bubble creation mechanisms in breaking waves. Nature 418 (6900), 839844.CrossRefGoogle ScholarPubMed
Deike, L., Ghabache, E., Liger-Belair, G., Das, A.K., Zaleski, S., Popinet, S. & Seon, T. 2018 The dynamics of jets produced by bursting bubbles. Phys. Rev. Fluids 3, 013603.CrossRefGoogle Scholar
Deike, L. & Melville, W.K. 2018 Gas transfer by breaking waves. Geophys. Res. Lett. 45 (19), 1048210492.CrossRefGoogle Scholar
Deike, L., Melville, W.K. & Popinet, S. 2016 Air entrainment and bubble statistics in breaking waves. J. Fluid Mech. 801, 91129.CrossRefGoogle Scholar
Deike, L., Pizzo, N. & Melville, W.K. 2017 Lagrangian transport by breaking surface waves. J. Fluid Mech. 829, 364391.CrossRefGoogle Scholar
Deike, L., Popinet, S. & Melville, W.K. 2015 Capillary effects on wave breaking. J. Fluid Mech. 769, 541569.CrossRefGoogle Scholar
Derakhti, M. & Kirby, J.T. 2014 Bubble entrainment and liquid–bubble interaction under unsteady breaking waves. J. Fluid Mech. 761, 464506.CrossRefGoogle Scholar
Derakhti, M. & Kirby, J.T. 2016 Breaking-onset, energy and momentum flux in unsteady focused wave packets. J. Fluid Mech. 790, 553581.CrossRefGoogle Scholar
Derakhti, M., Kirby, J.T., Banner, M.L., Grilli, S.T. & Thomson, J. 2020 A unified breaking onset criterion for surface gravity water waves in arbitrary depth. J. Geophys. Res.: Oceans 125, e2019JC015886.CrossRefGoogle Scholar
Dimotakis, P.E. 2005 Turbulent mixing. Annu. Rev. Fluid Mech. 37, 329356.CrossRefGoogle Scholar
Dodd, M.S., Mohaddes, D., Ferrante, A. & Ihme, M. 2021 Analysis of droplet evaporation in isotropic turbulence through droplet-resolved DNS. Intl J. Heat Mass Transfer 172, 121157.CrossRefGoogle Scholar
Dommermuth, D.G., Yue, D.K.P., Lin, W.M., Rapp, R.J., Chan, E.S. & Melville, W.K. 1988 Deep-water plunging breakers: a comparison between potential theory and experiments. J. Fluid Mech. 189, 423442.CrossRefGoogle Scholar
Drazen, D.A. & Melville, W.K. 2009 Turbulence and mixing in unsteady breaking surface waves. J. Fluid Mech. 628, 85119.CrossRefGoogle Scholar
Drazen, D.A., Melville, W.K. & Lenain, L. 2008 Inertial scaling of dissipation in unsteady breaking waves. J. Fluid Mech. 611, 307332.CrossRefGoogle Scholar
Druzhinin, O.A., Troitskaya, Y.I. & Zilitinkevich, S.S. 2017 The study of droplet-laden turbulent airflow over waved water surface by direct numerical simulation. J. Geophys. Res.: Oceans 122 (3), 17891807.CrossRefGoogle Scholar
Duncan, J.H. 1981 An experimental investigation of breaking waves produced by a towed hydrofoil. Proc. R. Soc. Lond. A 377 (1770), 331348.Google Scholar
Duncan, J.H., Qiao, H. & Philomin, V. 1999 Gentle spilling breakers: crest profile evolution. J. Fluid Mech. 379, 191222.CrossRefGoogle Scholar
Erinin, M.A., Wang, S.D., Liu, R., Towle, D., Liu, X. & Duncan, J.H. 2019 Spray generation by a plunging breaker. Geophys. Res. Lett. 46 (14), 82448251.CrossRefGoogle Scholar
Farsoiya, P.K., Popinet, S. & Deike, L. 2021 Bubble-mediated transfer of dilute gas in turbulence. J. Fluid Mech. 920, A34.CrossRefGoogle Scholar
Fedele, F., Banner, M.L. & Barthelemy, X. 2020 Crest speeds of unsteady surface water waves. J. Fluid Mech. 899, A5.CrossRefGoogle Scholar
Fuster, D., Agbaglah, G., Josserand, C., Popinet, S. & Zaleski, S. 2009 Numerical simulation of droplets, bubbles and waves: state of the art. Fluid Dyn. Res. 41 (6), 065001.CrossRefGoogle Scholar
Fuster, D. & Popinet, S. 2018 An all-Mach method for the simulation of bubble dynamics problems in the presence of surface tension. J. Comput. Phys. 374, 752768.CrossRefGoogle Scholar
Garrett, C., Li, M. & Farmer, D. 2000 The connection between bubble size spectra and energy dissipation rates in the upper ocean. J. Phys. Oceanogr. 30 (9), 21632171.2.0.CO;2>CrossRefGoogle Scholar
Gayen, B. & Sarkar, S. 2010 Turbulence during the generation of internal tide on a critical slope. Phys. Rev. Lett. 104 (21), 218502.CrossRefGoogle ScholarPubMed
Gaylo, D.B., Hendrickson, K. & Yue, D.K.P. 2021 Effects of power-law entrainment on bubble fragmentation cascades. J. Fluid Mech. 917, R1.CrossRefGoogle Scholar
Grare, L., Peirson, W.L., Branger, H., Walker, J.W., Giovanangeli, J.-P. & Makin, V. 2013 Growth and dissipation of wind-forced, deep-water waves. J. Fluid Mech. 722, 550.CrossRefGoogle Scholar
Hao, X. & Shen, L. 2019 Wind–wave coupling study using LES of wind and phase-resolved simulation of nonlinear waves. J. Fluid Mech. 874, 391425.CrossRefGoogle Scholar
Hendrickson, K. & Yue, D.K.P. 2006 Navier–Stokes simulations of unsteady small-scale breaking waves at a coupled air–water interface. In 26th Symposium on Naval Hydrodynamics.Google Scholar
Hinze, J.O. 1955 Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J. 1 (3), 289295.CrossRefGoogle Scholar
Iafrati, A. 2009 Numerical study of the effects of the breaking intensity on wave breaking flows. J. Fluid Mech. 622, 371411.CrossRefGoogle Scholar
Iafrati, A. 2011 Energy dissipation mechanisms in wave breaking processes: spilling and highly aerated plunging breaking events. J. Geophys. Res.: Oceans 116 (C7), C07024.Google Scholar
Kiger, K.T. & Duncan, J.H. 2012 Air-entrainment mechanisms in plunging jets and breaking waves. Annu. Rev. Fluid Mech. 44, 563596.CrossRefGoogle Scholar
Lamarre, E. & Melville, W.K. 1991 Air entrainment and dissipation in breaking waves. Nature 351, 469472.CrossRefGoogle Scholar
de Leeuw, G., Andreas, E.L., Anguelova, M.D., Fairall, C.W., Lewis, E.R., O'Dowd, C., Schulz, M. & Schwartz, S.E. 2011 Production flux of sea spray aerosol. Rev. Geophys. 49 (2), RG2001.CrossRefGoogle Scholar
Leifer, I. & de Leeuw, G. 2006 Bubbles generated from wind-steepened breaking waves: 1. Bubble plume bubbles. J. Geophys. Res.: Oceans 111 (C6), c06020.Google Scholar
Lhuissier, H. & Villermaux, E. 2012 Bursting bubble aerosols. J. Fluid Mech. 696, 544.CrossRefGoogle Scholar
Liang, J.-H., McWilliams, J.C., Sullivan, P.P. & Baschek, B. 2011 Modeling bubbles and dissolved gases in the ocean. J. Geophys. Res. 116 (C3), C03015.Google Scholar
Liang, J.-H., McWilliams, J.C., Sullivan, P.P. & Baschek, B. 2012 Large eddy simulation of the bubbly ocean: new insights on subsurface bubble distribution and bubble-mediated gas transfer. J. Geophys. Res. 117 (C4), C04002.Google Scholar
Ling, Y., Fuster, D., Zaleski, S. & Tryggvason, G. 2017 Spray formation in a quasiplanar gas–liquid mixing layer at moderate density ratios: a numerical closeup. Phys. Rev. Fluids 2 (1), 014005.CrossRefGoogle Scholar
Loewen, M.R. & Melville, W.K. 1994 An experimental investigation of the collective oscillations of bubble plumes entrained by breaking waves. J. Acoust. Soc. Am. 95 (3), 13291343.CrossRefGoogle Scholar
Loewen, M.R., O'Dor, M.A. & Skafel, M.G. 1996 Bubbles entrained by mechanically generated breaking waves. J. Geophys. Res. 101 (C9), 2075920769.CrossRefGoogle Scholar
Longuet-Higgins, M.S. 1982 Parametric solutions for breaking waves. J. Fluid Mech. 121, 403424.CrossRefGoogle Scholar
Longuet-Higgins, M.S. & Cokelet, E.D. 1976 The deformation of steep surface waves on water – I. A numerical method of computation. Proc. R. Soc. Lond. A. Math. Phys. Sci. 350 (1660), 126.Google Scholar
Lubin, P. & Glockner, S. 2015 Numerical simulations of three-dimensional plunging breaking waves: generation and evolution of aerated vortex filaments. J. Fluid Mech. 767, 364393.CrossRefGoogle Scholar
Lubin, P., Vincent, S., Abadie, S. & Caltagirone, J.-P. 2006 Three-dimensional large eddy simulation of air entrainment under plunging breaking waves. Coast. Engng 53 (8), 631655.CrossRefGoogle Scholar
Martinez-Bazan, C., Montanes, J.L. & Lasheras, J.C. 1999 On the breakup of an air bubble injected into a fully developed turbulent flow. Part 1. Breakup frequency. J. Fluid Mech. 401, 157182.CrossRefGoogle Scholar
McWilliams, J.C. 2016 Submesoscale currents in the ocean. Proc. R. Soc. A: Math. Phys. Engng Sci. 472 (2189), 20160117.CrossRefGoogle ScholarPubMed
Melville, W.K. 1982 The instability and breaking of deep-water waves. J. Fluid Mech. 115, 165185.CrossRefGoogle Scholar
Melville, W.K. 1994 Energy dissipation by breaking waves. J. Phys. Oceanogr. 24 (10), 20412049.2.0.CO;2>CrossRefGoogle Scholar
Melville, W.K. 1996 The role of surface-wave breaking in air–sea interaction. Annu. Rev. Fluid Mech. 28 (1), 279321.CrossRefGoogle Scholar
Melville, W.K., Veron, F. & White, C.J. 2002 The velocity field under breaking waves: coherent structure and turbulence. J. Fluid Mech. 454, 203233.CrossRefGoogle Scholar
Mostert, W. & Deike, L. 2020 Inertial energy dissipation in shallow-water breaking waves. J. Fluid Mech. 890, A12.CrossRefGoogle Scholar
Mukherjee, S., Safdari, A., Shardt, O., Kenjereš, S. & Van den Akker, H.E.A. 2019 Droplet–turbulence interactions and quasi-equilibrium dynamics in turbulent emulsions. J. Fluid Mech. 878, 221276.CrossRefGoogle Scholar
New, A.L. 1983 A class of elliptical free-surface flows. J. Fluid Mech. 130, 219239.CrossRefGoogle Scholar
New, A.L., McIver, P. & Peregrine, D.H. 1985 Computations of overturning waves. J. Fluid Mech. 150, 233251.CrossRefGoogle Scholar
Ortiz-Suslow, D.G., Haus, B.K., Mehta, S. & Laxague, N.J.M. 2016 Sea spray generation in very high winds. J. Atmos. Sci. 73 (10), 39753995.CrossRefGoogle Scholar
Perlin, M., Choi, W. & Tian, Z. 2013 Breaking waves in deep and intermediate waters. Annu. Rev. Fluid Mech. 45, 115145.CrossRefGoogle Scholar
Perrard, S., Rivière, A., Mostert, W. & Deike, L. 2021 Bubble deformation by a turbulent flow. J. Fluid Mech. 920, A15.CrossRefGoogle Scholar
Phillips, O.M. 1985 Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech. 156, 505531.CrossRefGoogle Scholar
Pizzo, N. 2020 Theory of deep-water surface gravity waves derived from a Lagrangian. J. Fluid Mech. 896, A7.CrossRefGoogle Scholar
Pizzo, N. & Melville, W.K. 2019 Focusing deep-water surface gravity wave packets: wave breaking criterion in a simplified model. J. Fluid Mech. 873, 238259.CrossRefGoogle Scholar
Pizzo, N., Melville, W.K. & Deike, L. 2019 Lagrangian transport by nonbreaking and breaking deep-water waves at the ocean surface. J. Phys. Oceanogr. 49 (4), 983992.CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Popinet, S. 2003 Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comput. Phys. 190 (2), 572600.CrossRefGoogle Scholar
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228 (16), 58385866.CrossRefGoogle Scholar
Popinet, S. 2018 Numerical models of surface tension. Annu. Rev. Fluid Mech. 50, 4975.CrossRefGoogle Scholar
Pullin, D.I. 2000 A vortex-based model for the subgrid flux of a passive scalar. Phys. Fluids 12 (9), 23112319.CrossRefGoogle Scholar
Rapp, R.J. & Melville, W.K. 1990 Laboratory measurements of deep-water breaking waves. Phil. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 331 (1622), 735800.Google Scholar
Reichl, B.G. & Deike, L. 2020 Contribution of sea-state dependent bubbles to air–sea carbon dioxide fluxes. Geophys. Res. Lett. 47, e2020GL087267.CrossRefGoogle Scholar
Richter, D.H. & Sullivan, P.P. 2013 Sea surface drag and the role of spray. Geophys. Res. Lett. 40 (3), 656660.CrossRefGoogle Scholar
Risso, F. & Fabre, J. 1998 Oscillations and breakup of a bubble immersed in a turbulent field. J. Fluid Mech. 372, 323355.CrossRefGoogle Scholar
Rivière, A., Mostert, W., Perrard, S. & Deike, L. 2021 Sub-Hinze scale bubble production in turbulent bubble break-up. J. Fluid Mech. 917, A40.CrossRefGoogle Scholar
Rojas, G. & Loewen, M.R. 2007 Fiber-optic probe measurements of void fraction and bubble size distributions beneath breaking waves. Exp. Fluids 43 (6), 895906.CrossRefGoogle Scholar
Romero, L. 2019 Distribution of surface wave breaking fronts. Geophys. Res. Lett. 46 (17–18), 1046310474.CrossRefGoogle Scholar
Romero, L., Melville, W.K. & Kleiss, J.M. 2012 Spectral energy dissipation due to surface wave breaking. J. Phys. Oceanogr. 42 (9), 14211444.CrossRefGoogle Scholar
Saket, A., Peirson, W.L., Banner, M.L., Barthelemy, X. & Allis, M.J. 2017 On the threshold for wave breaking of two-dimensional deep water wave groups in the absence and presence of wind. J. Fluid Mech. 811, 642.CrossRefGoogle Scholar
Schwendeman, M.S. & Thomson, J. 2017 Sharp-crested breaking surface waves observed from a ship-based stereo video system. J. Phys. Oceanogr. 47 (4), 775792.CrossRefGoogle Scholar
Shi, F., Kirby, J.T. & Ma, G. 2010 Modeling quiescent phase transport of air bubbles induced by breaking waves. Ocean Model. 35 (1-2), 105117.CrossRefGoogle Scholar
Soligo, G., Roccon, A. & Soldati, A. 2019 Breakage, coalescence and size distribution of surfactant-laden droplets in turbulent flow. J. Fluid Mech. 881, 244282.CrossRefGoogle Scholar
Song, C. & Sirviente, A.I. 2004 A numerical study of breaking waves. Phys. Fluids 16 (7), 26492667.CrossRefGoogle Scholar
Sreenivasan, K.R. 1984 On the scaling of the turbulence energy dissipation rate. Phys. Fluids 27 (5), 10481051.CrossRefGoogle Scholar
Tang, S., Yang, Z., Liu, C., Dong, Y.-H. & Shen, L. 2017 Numerical study on the generation and transport of spume droplets in wind over breaking waves. Atmosphere 8 (12), 248.CrossRefGoogle Scholar
Terrill, E.J., Melville, W.K. & Stramski, D. 2001 Bubble entrainment by breaking waves and their influence on optical scattering in the upper ocean. J. Geophys. Res. 106 (C8), 1681516823.CrossRefGoogle Scholar
Tian, Z., Perlin, M. & Choi, W. 2010 Energy dissipation in two-dimensional unsteady plunging breakers and an eddy viscosity model. J. Fluid Mech. 655, 217.CrossRefGoogle Scholar
Troitskaya, Y., Kandaurov, A., Ermakova, O., Kozlov, D., Sergeev, D. & Zilitinkevich, S. 2018 The ‘bag breakup’ spume droplet generation mechanism at high winds. Part I: spray generation function. J. Phys. Oceanogr. 48 (9), 21672188.CrossRefGoogle Scholar
Tulin, M.P. & Waseda, T. 1999 Laboratory observations of wave group evolution, including breaking effects. J. Fluid Mech. 378, 197232.CrossRefGoogle Scholar
Vejražka, J., Zedníková, M. & Stanovskỳ, P. 2018 Experiments on breakup of bubbles in a turbulent flow. AIChE J. 64 (2), 740757.CrossRefGoogle Scholar
Veron, F. 2015 Ocean spray. Annu. Rev. Fluid Mech. 47 (1), 507538.CrossRefGoogle Scholar
Veron, F., Hopkins, C., Harrison, E.L. & Mueller, J.A. 2012 Sea spray spume droplet production in high wind speeds. Geophys. Res. Lett. 39 (16).CrossRefGoogle Scholar
Villermaux, E. 2020 Fragmentation versus cohesion. J. Fluid Mech. 898, P1.CrossRefGoogle Scholar
Wang, Z., Yang, J. & Stern, F. 2016 High-fidelity simulations of bubble, droplet and spray formation in breaking waves. J. Fluid Mech. 792, 307327.CrossRefGoogle Scholar
Watanabe, Y., Saeki, H. & Hosking, R.J. 2005 Three-dimensional vortex structures under breaking waves. J. Fluid Mech. 545, 291328.CrossRefGoogle Scholar
Wu, J. 1979 Oceanic whitecaps and sea state. J. Phys. Oceanogr. 9 (5), 10641068.2.0.CO;2>CrossRefGoogle Scholar
Yang, Z., Deng, B.-Q. & Shen, L. 2018 Direct numerical simulation of wind turbulence over breaking waves. J. Fluid Mech. 850, 120155.CrossRefGoogle Scholar
Zhang, B., Popinet, S. & Ling, Y. 2020 Modeling and detailed numerical simulation of the primary breakup of a gasoline surrogate jet under non-evaporative operating conditions. Intl J. Multiphase Flow 130, 103362.CrossRefGoogle Scholar
Supplementary material: File

Mostert et al. supplementary material

Mostert et al. supplementary material

Download Mostert et al. supplementary material(File)
File 2 MB

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

High-resolution direct simulation of deep water breaking waves: transition to turbulence, bubbles and droplets production
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

High-resolution direct simulation of deep water breaking waves: transition to turbulence, bubbles and droplets production
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

High-resolution direct simulation of deep water breaking waves: transition to turbulence, bubbles and droplets production
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *