Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-vh8gq Total loading time: 0.521 Render date: 2022-09-30T06:37:35.445Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Hydrodynamics of binary mixtures of granular gases with stochastic coefficient of restitution

Published online by Cambridge University Press:  28 September 2015

D. Serero*
Affiliation:
Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
N. Gunkelmann
Affiliation:
Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany Physics Department and Research Center OPTIMAS, University Kaiserslautern, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern, Germany
T. Pöschel
Affiliation:
Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
*
Email address for correspondence: dan.serero@cbi.uni-erlangen.de

Abstract

A hydrodynamic description of dilute binary gas mixtures comprising smooth inelastic spheres interacting by binary collisions with a random coefficient of restitution is presented. Constitutive relations are derived using the Chapman–Enskog perturbative method, associated with a computer-aided method to allow high-order Sonine polynomial expansions. The transport coefficients obtained are checked against DSMC simulations. The resulting equations are applied to the analysis of a vertically vibrated system. It is shown that differences in the shape of the distributions of the coefficient of restitution are sufficient to produce partial segregation.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnarson, B. O. & Willits, J. T. 1998 Thermal diffusion in binary mixtures of smooth, nearly elastic spheres with and without gravity. Phys. Fluids 10 (6), 13241328.CrossRefGoogle Scholar
Aspelmeier, T. & Zippelius, A. 2000 Dynamics of a one-dimensional granular gas with a stochastic coefficient of restitution. Physica A 282 (3–4), 450474.CrossRefGoogle Scholar
Bannerman, M. N., Sargant, R. & Lue, L. 2011 Dynamo: a free o(n) general event-driven simulator. J. Comput. Chem. 32, 33293338.CrossRefGoogle ScholarPubMed
Barrat, A. & Trizac, E. 2003 Random inelasticity and velocity fluctuations in a driven granular gas. Eur. Phys. J. E 11 (1), 99104.CrossRefGoogle Scholar
Barrat, A., Trizac, E. & Fuchs, J. N. 2001 Heated granular fluids: the random restitution coefficient approach. Eur. Phys. J. E 5, 161170.CrossRefGoogle Scholar
Bird, G. A. 1976 Molecular Gas Dynamics. Clarendon.Google Scholar
Brey, J. J., Dufty, J. W., Kim, C. S. & Santos, A. 1998 Hydrodynamics for granular flow at low density. Phys. Rev. E 58 (4), 46384653.CrossRefGoogle Scholar
Brey, J. J. & Ruiz-Montero, M. J. 2004 Heat flux and upper boundary condition in an open fluidized granular gas. Europhys. Lett. 66 (6), 805811.CrossRefGoogle Scholar
Brey, J. J., Ruiz-Montero, M. J. & Moreno, F. 2001 Hydrodynamics of an open vibrated granular system. Phys. Rev. E 63 (6), 061305.CrossRefGoogle ScholarPubMed
Brey, J. J., Ruiz-Montero, M. J. & Moreno, F. 2005 Energy partition and segregation for an intruder in a vibrated granular system under gravity. Phys. Rev. Lett. 95 (9), 098001.CrossRefGoogle Scholar
Brito, R., Enriquez, H., Godoy, S. & Soto, R. 2008 Segregation induced by inelasticity in a vibrofluidized granular mixture. Phys. Rev. E 77 (6), 061301.CrossRefGoogle Scholar
Brito, R. & Soto, R. 2009 Competition of Brazil nut effect, buoyancy, and inelasticity induced segregation in a granular mixture. Eur. Phys. J. 179, 207219.Google Scholar
Carrillo, J. A., Cordier, S. & Toscani, G. 2009 Over-populated tails for conservative-in-the-mean inelastic maxwell models. Discrete Contin. Dyn. Syst. Ser. A 24, 5981.Google Scholar
Chapman, S & Cowling, T. G. 1970 The Mathematical Theory of Nonuniform Gases. Cambridge University Press.Google Scholar
Dufty, J. W. & Brey, J. J. 2011 Choosing hydrodynamic fields. Math. Model. Nat. Phenom. 6 (4), 1936.CrossRefGoogle Scholar
Farkas, Z., Szalai, F., Wolf, D. E. & Vicsek, T. 2002 Segregation of binary mixtures by a ratchet mechanism. Phys. Rev. E 65, 022301.Google ScholarPubMed
Garzó, V. 2006 Segregation in granular binary mixtures: thermal diffusion. Europhys. Lett. 75 (4), 521527.CrossRefGoogle Scholar
Garzó, V. 2008 Brazil-nut effect versus reverse Brazil-nut effect in a moderately dense granular fluid. Phys. Rev. E 78, 020301.Google Scholar
Garzo, V. 2011 Thermal diffusion segregation in granular binary mixtures described by the enskog equation. New J. Phys. 13, 055020.CrossRefGoogle Scholar
Garzo, V. & Dufty, J. W. 2002 Hydrodynamics for a granular binary mixture at low density. Phys. Fluids 14 (4), 14761490.CrossRefGoogle Scholar
Garzo, V. & Montanero, J. M. 2004 Diffusion of impurities in a granular gas. Phys. Rev. E 69 (2), 021301.CrossRefGoogle Scholar
Garzo, V. & Trizac, E. 2011 Non-equilibrium phase transition in a sheared granular mixture. Europhys. Lett. 94 (5), 50009.CrossRefGoogle Scholar
Garzo, V., Vega Reyes, F. & Maria Montanero, J. 2009 Modified sonine approximation for granular binary mixtures. J. Fluid Mech. 623, 387411.CrossRefGoogle Scholar
Giese, G. & Zippelius, A. 1996 Collision properties of one-dimensional granular particles with internal degrees of freedom. Phys. Rev. E 54 (5), 48284837.CrossRefGoogle ScholarPubMed
Goldhirsch, I. 2003 Rapid granular flows. Annu. Rev. Fluid Mech. 35, 267293.CrossRefGoogle Scholar
Goldhirsch, I. & Ronis, D. 1983a Theory of thermophoresis I: general considerations and mode coupling analysis. Phys. Rev. A 27, 16161634.CrossRefGoogle Scholar
Goldhirsch, I. & Ronis, D. 1983b Theory of thermophoresis II: low-density behavior. Phys. Rev. A 27, 16351656.CrossRefGoogle Scholar
Goldhirsch, I. & Zanetti, G. 1993 Clustering instability in dissipative gases. Phys. Rev. Lett. 70 (11), 16191622.CrossRefGoogle ScholarPubMed
Grad, H. 1949 On the kinetic theory of rarefied gases. Commun. Pure Appl. Maths 2, 331407.CrossRefGoogle Scholar
de Groot, S. R. & Mazur, P. 1969 Non-Equilibrium Thermodynamics. North-Holland.Google Scholar
Gunkelmann, N., Montaine, M. & Poschel, T. 2014 Stochastic behavior of the coefficient of normal restitution. Phys. Rev. E 89 (2), 022205.CrossRefGoogle ScholarPubMed
Hatzes, A., Bridges, F. G. & Lin, D. N. C. 1988 Collisional properties of ice spheres at low impact velocities. Mon. Not. R. Astron. Soc. 231, 10911115.CrossRefGoogle Scholar
Hsiau, S. S. & Hunt, M. L. 1996 Granular thermal diffusion in flows of binary-sized mixtures. Acta Mechanica 114 (1–4), 121137.CrossRefGoogle Scholar
Jaeger, H. M., Nagel, S. R. & Behringer, R. P. 1996 Granular solids, liquids, and gases. Rev. Mod. Phys. 68 (4), 12591273.Google Scholar
Jenkins, J. T. & Yoon, D. K. 2002 Segregation in binary mixtures under gravity. Phys. Rev. Lett. 88 (19), 194301.CrossRefGoogle ScholarPubMed
Kondic, L., Hartley, R. R., Tennakoon, S. G. K., Painter, B. & Behringer, R. P. 2003 Segregation by friction. Europhys. Lett. 61 (6), 742748.CrossRefGoogle Scholar
Kudrolli, A. 2004 Size separation in vibrated granular matter. Rep. Prog. Phys. 67, 209247.CrossRefGoogle Scholar
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics. Pergamon.Google Scholar
Lifshitz, J. M. & Kolsky, H. 1964 Some experiments on anelastic rebound. J. Mech. Phys. Solids 12, 3543.CrossRefGoogle Scholar
Lutsko, J. F. 2004 Rheology of dense polydisperse granular fluids under shear. Phys. Rev. E 70 (6), 061101.CrossRefGoogle ScholarPubMed
Montaine, M., Heckel, M., Kruelle, C., Schwager, T. & Pöschel, T. 2011 Coefficient of restitution as a fluctuating quantity. Phys. Rev. E 84, 041306.CrossRefGoogle ScholarPubMed
Noskowicz, S. H., Bar-Lev, O., Serero, D. & Goldhirsch, I. 2007 Computer-aided kinetic theory and granular gases. Europhys. Lett. 79 (6), 60001.Google Scholar
Ottino, J. M. & Khakhar, D. V. 2000 Mixing and segregation of granular materials. Annu. Rev. Fluid Mech. 32, 5591.CrossRefGoogle Scholar
Pöschel, T., Brilliantov, N. V. & Schwager, T. 2003 Long-time behavior of granular gases with impact-velocity dependent coefficient of restitution. Physica A 325, 274283.CrossRefGoogle Scholar
Rapaport, D. C. 2001 Mechanism for granular segregation. Phys. Rev. E 64 (6), 061304.Google ScholarPubMed
Schröter, M., Ulrich, S., Kreft, J., Swift, J. B. & Swinney, H. L. 2006 Mechanisms in the size segregation of a binary granular mixture. Phys. Rev. E 74 (1), 011307.CrossRefGoogle ScholarPubMed
Schwager, T. & Pöschel, T. 1998 Coefficient of restitution of viscous particles and cooling rate of granular gases. Phys. Rev. E 57, 650654.CrossRefGoogle Scholar
Serero, D.2009 Kinetic theory of granular gas mixtures. PhD thesis, Tel Aviv University.Google Scholar
Serero, D., Goldhirsch, I., Noskowicz, S. H. & Tan, M. L. 2006 Hydrodynamics of granular gases and granular gas mixtures. J. Fluid Mech. 554, 237258.CrossRefGoogle Scholar
Serero, D., Noskowicz, S. H. & Goldhirsch, I. 2007 Exact versus mean field solutions for granular gas mixtures. Granul. Matt. 10 (1), 3746.CrossRefGoogle Scholar
Serero, D., Noskowicz, S. H. & Goldhirsch, I. 2011 Theory of dilute binary granular gas mixtures. Math. Model. Nat. Phenom. 6 (1), 1747.CrossRefGoogle Scholar
Serero, D., Noskowicz, S. H., Tan, M. L. & Goldhirsch, I. 2009 Binary granular gas mixtures: theory, layering effects and some open questions. Eur. Phys. J. 179, 221247.Google Scholar
Shinbrot, T. & Muzzio, F. J. 2000 Nonequilibrium patterns in granular mixing and segregation. Phys. Today 53, 2530.CrossRefGoogle Scholar
Trujillo, L., Alam, M. & Herrmann, H. J. 2003 Segregation in a fluidized binary granular mixture: competition between buoyancy and geometric force. Europhys. Lett. 64, 190196.CrossRefGoogle Scholar
Ulrich, S., Schröeter, M. & Swinney, H. L. 2007 Influence of friction on granular segregation. Phys. Rev. E 76 (4), 042301.Google ScholarPubMed
Yoon, D. K. & Jenkins, J. T. 2006 The influence of different species’ granular temperatures on segregation in a binary mixture of dissipative grains. Phys. Fluids 18, 073303.CrossRefGoogle Scholar
9
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Hydrodynamics of binary mixtures of granular gases with stochastic coefficient of restitution
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Hydrodynamics of binary mixtures of granular gases with stochastic coefficient of restitution
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Hydrodynamics of binary mixtures of granular gases with stochastic coefficient of restitution
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *