Hostname: page-component-7f64f4797f-6fdxz Total loading time: 0 Render date: 2025-11-08T09:43:19.069Z Has data issue: false hasContentIssue false

The influence of an insoluble surfactant on capillary oscillations of a bubble in a liquid

Published online by Cambridge University Press:  06 November 2025

Tatyana Lyubimova*
Affiliation:
Institute of Continuous Media Mechanics UB RAS, 1, Koroleva Street, Perm 614013, Russia
Vladimir Konovalov
Affiliation:
Institute of Continuous Media Mechanics UB RAS, 1, Koroleva Street, Perm 614013, Russia
Evgeny Borzenko
Affiliation:
Tomsk State University, Tomsk, 36, Lenin Ave., Tomsk 634050 Russia
Alexander Nepomnyashchy
Affiliation:
Technion–Israel Institute of Technology, Haifa 32000, Israel
*
Corresponding author: Tatyana Lyubimova, lubimova@psu.ru

Abstract

This study is devoted to the analysis of capillary oscillations of a gas bubble in a liquid with an insoluble surfactant adsorbed on the surface. The influence of the Gibbs elasticity, the viscosities of the liquid and gas, as well as the shear and dilatational surface viscosities, on the damping of free oscillations is examined. Dependences of the frequency shift and the damping rate on the parameters of the problem are determined. In the limit of small viscosities and neglecting the surfactant surface diffusion, a simplified dispersion relation is obtained, which includes finite parameters of surface viscosities and Gibbs elasticity. From this relation, conditions are identified under which the damping of capillary oscillations can occur with a small frequency. Numerical solutions of the full dispersion relation demonstrate that a non-oscillatory regime is impossible for the considered configuration. An additional mode associated with Gibbs elasticity is discovered, characterized as a rule by low natural frequency and damping rate. Approximate relations for the complex natural frequency of bubble oscillations in a low-viscosity liquid in the presence of a surfactant are derived, including an estimate of the contribution of the gas inside the bubble to viscous dissipation. An original Lagrangian–Eulerian method is proposed and used to perform direct numerical simulations based on the full nonlinear Navier–Stokes equations and natural boundary conditions at the interface, accounting for shear and dilatational viscosities. The numerical data on the damping process confirm the results of the linear theory.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Asaki, T.J. & Marston, P.L. 1997 The effect of a soluble surfactant on quadrupole shape oscillations and dissolution of air bubbles in water. J. Acoust. Soc. Am. 102, 33723377.10.1121/1.421007CrossRefGoogle Scholar
Bazlekov, I.B., Anderson, P.D. & Meijer, H.E.H. 2004 Nonsingular boundary integral method for deformable drops in viscous flows. Phys. Fluids 16, 10641081.10.1063/1.1648639CrossRefGoogle Scholar
Bazlekov, I.B., Anderson, P.D. & Meijer, H.E.H. 2006 Numerical investigation of the effect of insoluble surfactants on drop deformation and breakip in simple shear flow. J. Colloid Interface Sci. 298, 369394.10.1016/j.jcis.2005.12.017CrossRefGoogle Scholar
Bozzano, G. & Dente, M. 2009 Single BUBBLE AND DROP MOTION MODELING. Chem. Engng Trans. 17, 567572.Google Scholar
Chandrasekhar, S. 1959 The oscillations of a viscous liquid globe, proc. lond. math. soc. s3-9, 141149.10.1112/plms/s3-9.1.141CrossRefGoogle Scholar
de Langavant, C.C., Guittet, A., Theillard, F., Temprano-Coleto, F. & Gibou, F. 2017 Level-set simulations of soluble surfactant driven flows. J. Comput. Phys. 348, 271297.10.1016/j.jcp.2017.07.003CrossRefGoogle Scholar
Drumright-Clarke, M. & Renardy, Y. 2004 The effect of insoluble surfactant at dilute concentration on drop breakup under shear with inertia. Phys. Fluids 16, 1421.10.1063/1.1628232CrossRefGoogle Scholar
Freer, E.M., Wong, H. & Radke, C.J. 2005 Oscillating drop/bubble tensiometry: effect of viscous forces on the measurement of interfacial tension. J. Colloid Interface Sci. 282, 128132.10.1016/j.jcis.2004.08.058CrossRefGoogle ScholarPubMed
Glazman, R.E. 1983 Effects of adsorbed films on gas bubble radial oscillations. J. Acoust. Soc. Am. 74, 980986.10.1121/1.389844CrossRefGoogle Scholar
James, A.J. & Lowengrub, J. 2004 A surfactant-conserving volume-of-fluid method for interfacial flows withinsoluble surfactant. J. Comput. Phys. 201, 685722.10.1016/j.jcp.2004.06.013CrossRefGoogle Scholar
Johnson, D.O. & Stebe, K.J. 1994 Oscillating bubble tensiometry: a method for measuring the surfactant adsorptive-desorptive kinetics and the surface dilatational viscosity. J. Colloid Interface Sci. 168, 2131.10.1006/jcis.1994.1389CrossRefGoogle Scholar
Karapaitsios, T.D. & Kostoglou, M. 1999 Investigation of the oscillating bubble technique for the determination of interfacial dilatational properties. Colloids Surf., A 156, 4964.10.1016/S0927-7757(99)00013-8CrossRefGoogle Scholar
Lalanne, B., Masbernat, O. & Risso, F. 2020 Determination of interfacial concentration of a contaminated droplet from shape oscillation damping. Phys. Rev. Lett. 124, 194501.10.1103/PhysRevLett.124.194501CrossRefGoogle ScholarPubMed
Lalanne, B., Tanguy, S. & Risso, F. 2013 Effect of rising motion on the damped shape oscillations of drops and bubbles. Phys. Fluids 25 (11), 122.10.1063/1.4829366CrossRefGoogle Scholar
Lamb, H. 1932 Hydrodynamics. 6th edn. Cambridge University Press.Google Scholar
Levich, V.G. 1962 Physicochemical Hydrodynamics. Prentice-Hall.Google Scholar
Lu, H. & Apfel, R.E. 1990 Quadrupole oscillations of drops for studying interfacial properties. J. Colloid Interface Sci. 134, 245255.10.1016/0021-9797(90)90272-PCrossRefGoogle Scholar
Lu, H. & Apfel, R.E. 1991 Shape oscillations of drops in the presence of surfactants. J. Fluid Mech. 222, 351368.CrossRefGoogle Scholar
Luo, Z.Y., Shang, X.L. & Bai, B.F. 2019 Influence of pressure-dependent surface viscosity on dynamics of surfactant-laden drops in shear flow. J.Fluid Mech. 858, 91121.10.1017/jfm.2018.781CrossRefGoogle Scholar
Lyubimov, D.V., Konovalov, V.V., Lyubimova, T.P. & Egry, I. 2011 Small amplitude shape oscillations of a spherical liquid drop with surface viscosity. J.Fluid Mech. 677, 204217.10.1017/jfm.2011.76CrossRefGoogle Scholar
Meier, W., Greune, G., Mayboom, A. & Hofmann, K.P. 2000 Surface tension and viscosity of surfactant from the resonance of an oscillating drop. Eur. Biophys., J. 29, 113124.10.1007/s002490050256CrossRefGoogle ScholarPubMed
Miller, C.A. & Scriven, L.E. 1968 The oscillations of a fluid droplet immersed in another fluid. J. Fluid Mech. 32, 417435.10.1017/S0022112068000832CrossRefGoogle Scholar
Nadim, A. 1996 A concise introduction to surface rheology with application to dilute emulsions of viscous drops. Chem. Engng Commun. 148–150 (1), 391407.CrossRefGoogle Scholar
Patankar, S.V. 1980 Numerical Heat Transfer and Fluid Flow. McGRAW-HILL BOOK COMPANY.Google Scholar
Piedfert, A., Lalanne, B., Masbernat, O. & Risso, F. 2018 Numerical simulations of a rising drop with shape oscillations in the presence of surfactants. Phys. Rev. Fluids 3, 103605.10.1103/PhysRevFluids.3.103605CrossRefGoogle Scholar
Plesset, M.S. 1949 The dynamics of cavitation bubbles. J. Appl. Mech. 16, 277282.10.1115/1.4009975CrossRefGoogle Scholar
Prosperetti, A. 1980 Normal mode analysis for the oscillations of a viscous liquid drop in an immiscible liquid. J. Méc 19, 149182.Google Scholar
Ravera, F., Loglio, G. & Kovalchuk, V.I. 2010 Interfacial dilational rheology by oscillating bubble/drop methods. Curr. Opinion Colloid Interface Sci. 15, 217228.10.1016/j.cocis.2010.04.001CrossRefGoogle Scholar
Rayleigh, L. 1879 The capillary phenomena in jets. Proc. R. Soc. 29, 7197.Google Scholar
Reid, W.H. 1960 The oscillations of a viscous liquid drop. Quaterly Appl. Maths 18, 8689.10.1090/qam/114449CrossRefGoogle Scholar
Reusken, A. & Zhang, Y. 2013 Numerical simulation of incompressible two‐phase flows with a Boussinesq–Scriven interface stress tensor. Intl J. Numer. Methods Fluids 73, 10421058.10.1002/fld.3835CrossRefGoogle Scholar
Scriven, L.E. 1960 Dynamics of a fluid interface. Equations of motion for newtonian surface fluids. Chem. Engng Sci. 12, 98108.10.1016/0009-2509(60)87003-0CrossRefGoogle Scholar
Sparling, L. & Sedlak, J. 1989 Dynamic equilibrium fluctuations of fluid droplets. Phys. Rev., A 39, 13511364.10.1103/PhysRevA.39.1351CrossRefGoogle ScholarPubMed
Stone, H.A. 1990 A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface. Phys. Fluids, A 2, 111112.10.1063/1.857686CrossRefGoogle Scholar
Tian, Y., Holt, R.G. & Apfel, R.E. 1995 Investigations of liquid surface rheology of surfactant solutions by droplet shape oscillations: theory. Phys. Fluids 7, 29382949.10.1063/1.868671CrossRefGoogle Scholar
Wong, H., Rumschitzki, D. & Maldarelli, C. 1996 On the surfactant mass balance at a deforming fluid interface. Phys. Fluids 8, 32033204.10.1063/1.869098CrossRefGoogle Scholar
Xu, J.J. & Zhao, H.K. 2003 An Eulerian formulation for solving partial differential equations along a moving interface. J. Sci. Comput. 19, 573594.10.1023/A:1025336916176CrossRefGoogle Scholar
Zav’ialov, YuS., Kvasov, B.I. & Miroshnichenko, V.L. 1980 Methods of Spline Functions.Nauka.Google Scholar
Zhong, X. & Ardekani, A. 2022 A model for bubble dynamics in a protein solution. J. Fluid Mech. 935, A27.10.1017/jfm.2022.20CrossRefGoogle Scholar