Hostname: page-component-7f64f4797f-m2b9p Total loading time: 0 Render date: 2025-11-06T15:40:41.227Z Has data issue: false hasContentIssue false

Interactions and grouping behaviours of microswimmers and spheres

Published online by Cambridge University Press:  04 November 2025

Deming Nie
Affiliation:
College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou, PR China
Zenan Lai
Affiliation:
College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou, PR China
Kai Zhang
Affiliation:
College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou, PR China
Jianzhong Lin*
Affiliation:
Key Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, Ningbo, PR China State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou, PR China
*
Corresponding author: Jianzhong Lin, mecjzlin@zju.edu.cn

Abstract

We performed three-dimensional simulations to study the motion and interaction of microswimmers (pulling- and pushing-type squirmers) and spheres for Reynolds numbers ranging from 0.01 to 1 under conditions in which all particles were axially aligned with each other. We show that pullers are attractive and pushers are repulsive, in terms of the pressure at the front and rear of the squirmers. Correspondingly, the pullers always come close to each other and form a string that swims slightly faster than does a single puller. A possible reason for this finding is discussed. In contrast, whether a leading puller touches a trailing pusher depends primarily on its strength. When the two have similar strengths, they come into contact and form a stable doublet with finite inertia. The speed of the doublet is substantially higher than that of a single pusher owing to the additional force stemming from the fore and aft pressure differences of the doublet. We also demonstrate how a leading pusher interacts with a trailing puller, which is quite different. In contrast, a sphere can be directly or hydrodynamically ‘pushed’ to run by a puller or a pusher. In particular, we reveal that the sphere exhibits the highest speed when ‘pulled’ by a leading puller and ‘pushed’ by a trailing pusher simultaneously. Grouping behaviours reflect the interacting nature of the microswimmers and spheres from different aspects. A bunch of pushers/pullers eventually appears in pairs or forms a string depending on the Reynolds number, similar to groups of pushers/spheres and pullers/spheres.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aidun, C.K., Lu, Y. & Ding, E. 1998 Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J. Fluid Mech. 373, 287311.CrossRefGoogle Scholar
Akolpoglu, M.B., Alapan, Y., Dogan, N.O., Baltaci, S.F., Yasa, O., Aybar Tural, G. & Sitti, M. 2022 Magnetically steerable bacterial microrobots moving in 3D biological matrices for stimuli-responsive cargo delivery. Sci. Adv. 8 (28), eabo6163.CrossRefGoogle ScholarPubMed
Alapan, Y., Yasa, O., Schauer, O., Giltinan, J., Tabak, A.F., Sourjik, V. & Sitti, M. 2018 Soft erythrocyte-based bacterial microswimmers for cargo delivery. Sci. Robot. 3 (17), eaar4423.CrossRefGoogle ScholarPubMed
Aranson, I.S. 2022 Bacterial active matter. Rep. Prog. Phys. 85, 076601.10.1088/1361-6633/ac723dCrossRefGoogle ScholarPubMed
Blake, J.R. 1971 A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 46 (1), 199208.CrossRefGoogle Scholar
Burkholder, E.W. & Brady, J.F. 2017 Tracer diffusion in active suspensions. Phys. Rev. E 95, 052605.CrossRefGoogle ScholarPubMed
Chisholm, N., Legendre, D., Lauga, E. & Khair, A. 2016 A squirmer across Reynolds numbers. J. Fluid Mech. 796, 233256.CrossRefGoogle Scholar
Clopés, J., Gompper, G. & Winkler, R.G. 2020 Hydrodynamic interactions in squirmer dumbbells: active stress-induced alignment and locomotion. Soft Matter 16, 10676.CrossRefGoogle ScholarPubMed
Clopés, J., Gompper, G. & Winkler, R.G. 2022 Alignment and propulsion of squirmer pusher–puller dumbbells. J. Chem. Phys. 156, 194901.CrossRefGoogle ScholarPubMed
Debnath, T. & Ghosh, P.K. 2018 Activated barrier crossing dynamics of a Janus particle carrying cargo. Phys. Chem. Chem. Phys. 20 (38), 25069.CrossRefGoogle Scholar
Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R.E. & Kessler, J.O. 2004 Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93 (9), 098103.CrossRefGoogle ScholarPubMed
Duval, J.F.L. & Gaboriaud, F. 2010 Progress in electrohydrodynamics of soft microbial particle interphases. Curr. Opin. Colloid Interface Sci. 15 (3), 184195.CrossRefGoogle Scholar
Elgeti, J., Winkler, R.G. & Gompper, G. 2015 Physics of microswimmers – single particle motion and collective behavior: a review. Rep. Prog. Phys. 78, 056601.CrossRefGoogle ScholarPubMed
Gao, W. 2012 Cargo-towing fuel-free magnetic nanoswimmers for targeted drug delivery. Small 8 (3), 460467.CrossRefGoogle ScholarPubMed
Glowinski, R., Pan, T.-W., Hesla, T.I., Joseph, D.D. & Periaux, J. 2001 A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J. Comput. Phys. 169 (2), 363426.CrossRefGoogle Scholar
Goh, S., Winkler, R.G. & Gompper, G. 2023 Hydrodynamic pursuit by cognitive self-steering microswimmers. Commun. Phys. 6, 310.CrossRefGoogle Scholar
Götze, I.O. & Gompper, G. 2010 Mesoscale simulations of hydrodynamic squirmer interactions. Phys. Rev. E 82, 041921.10.1103/PhysRevE.82.041921CrossRefGoogle ScholarPubMed
Hu, J., Yang, M., Gompper, G. & Winkler, R.G. 2015 Modelling the mechanics and hydrodynamics of swimming E. coli . Soft Matter 11, 78677876.CrossRefGoogle ScholarPubMed
Ishikawa, T. & Hota, M. 2006 Interaction of two swimming Paramecia . J. Expl. Biol. 209 (22), 44524463.CrossRefGoogle ScholarPubMed
Ishikawa, T., Sekiya, G., Imai, Y. & Yamaguchi, T. 2007 Hydrodynamic interactions between two swimming bacteria. Biophys. J. 93 (6), 22172225.CrossRefGoogle ScholarPubMed
Ishikawa, T., Simmonds, M.P. & Pedley, T.J. 2006 Hydrodynamic interaction of two swimming model micro-organisms. J. Fluid Mech. 568, 119160.CrossRefGoogle Scholar
Ishimoto, K. & Gaffney, E.A. 2013 Squirmer dynamics near a boundary. Phys. Rev. E 88, 062702.CrossRefGoogle Scholar
Khair, A.S. & Chisholm, N.G. 2014 Expansions at small Reynolds numbers for the locomotion of a spherical squirmer. Phys. Fluids 26 (1), 011902.CrossRefGoogle Scholar
Kim, M.J. & Breuer, K.S. 2004 Enhanced diffusion due to motile bacteria. Phys. Fluids 16 (9), 7881.10.1063/1.1787527CrossRefGoogle Scholar
Koch, D. & Subramanian, G. 2011 Collective hydrodynamics of swimming microorganisms: living fluids. Annu. Rev. Fluid Mech. 43 (1), 637659.CrossRefGoogle Scholar
Lallemand, P. & Luo, L.S. 2003 Lattice Boltzmann method for moving boundaries. J. Comput. Phys. 184 (2), 406421.10.1016/S0021-9991(02)00022-0CrossRefGoogle Scholar
Lauga, E. & Powers, T. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72 (9), 096601.CrossRefGoogle Scholar
Leptos, K.C., Guasto, J.S., Gollub, J.P., Pesci, A.I. & Goldstein, R.E. 2009 Dynamics of enhanced tracer diffusion in suspensions of swimming eukaryotic microorganisms. Phys. Rev. Lett. 103, 198103.CrossRefGoogle ScholarPubMed
Lighthill, M.J. 1952 On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun. Pure Appl. Math. 5 (2), 109118.CrossRefGoogle Scholar
Li, G., Ostace, A. & Ardekani, A.M. 2016 Hydrodynamic interaction of swimming organisms in an inertial regime. Phys. Rev. E 94 (5), 053104.CrossRefGoogle Scholar
Li, S. & Nie, D. 2024 Study on the effect of geometric shape on microswimmer upstream motion. Phys. Fluids 36 (10), 103351.CrossRefGoogle Scholar
Lin, Z. & Gao, T. 2019 Direct-forcing fictitious domain method for simulating non-Brownian active particles. Phys. Rev. E 100 (1), 013304.CrossRefGoogle ScholarPubMed
Lin, Z., Jiang, T. & Shang, J. 2022 The emerging technology of biohybrid micro-robots: a review. Bio-des. Manuf. 5, 107132.CrossRefGoogle Scholar
Lushi, E., Wioland, H. & Goldstein, R.E. 2014 Fluid flows generated by swimming bacteria drive self-organization in confined fluid suspensions. Proc. Natl Acad. Sci. USA 111 (27), 97339738.CrossRefGoogle Scholar
Magdanz, V., Vivaldi, J., Mohanty, S., Klingner, A., Vendittelli, M., Simmchen, J., Misra, S. & Khalil, I.S. 2021 Impact of segmented magnetization on the flagellar propulsion of sperm-templated microrobots. Adv. Sci. 8 (8), 2004037.10.1002/advs.202004037CrossRefGoogle ScholarPubMed
Muzzeddu, P., Roldán, É., Gambassi, A. & Sharma, A. 2023 Taxis of cargo-carrying microswimmers in traveling activity waves. Europhys. Lett. 142 (6), 67001.CrossRefGoogle Scholar
Nie, D., Ying, Y., Guan, G., Lin, J. & Ouyang, Z. 2023 Two-dimensional study on the motion and interactions of squirmers under gravity in a vertical channel. J. Fluid Mech. 960, A31.10.1017/jfm.2023.155CrossRefGoogle Scholar
Nie, D., Zhang, K. & Lin, J. 2024 Enhanced speed of microswimmers adjacent to a rough surface. Phys. Rev. E 110 (4), 045101.10.1103/PhysRevE.110.045101CrossRefGoogle ScholarPubMed
Ouyang, Z., Lin, Z., Lin, J., Yu, Z. & Phan-Thien, N. 2023 Cargo carrying with an inertial squirmer in a Newtonian fluid. J. Fluid Mech. 959, A25.CrossRefGoogle Scholar
Pak, O.S. & Lauga, E. 2014 Generalized squirming motion of a sphere. J. Eng. Maths. 88, 128.10.1007/s10665-014-9690-9CrossRefGoogle Scholar
Pan, T., Shi, Y., Zhao, N., Xiong, J., Xiao, Y., Xin, H. & Li, B. 2022 Bio-micromotor tweezers for noninvasive bio-cargo delivery and precise therapy. Adv. Funct. Mater. 32 (16), 2111038.CrossRefGoogle Scholar
Papavassiliou, D. & Alexander, G.P. 2017 Exact solutions for hydrodynamic interactions of two squirming spheres. J. Fluid Mech. 813, 618646.CrossRefGoogle Scholar
Pedley, T.J. & Kessler, J.O. 1992 Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu. Rev. Fluid Mech. 24 (1), 313358.CrossRefGoogle Scholar
Pooley, C.M., Alexander, G.P. & Yeomans, J.M. 2012 Hydrodynamic interaction between two swimmers at low Reynolds number. Phys. Rev. Lett. 99 (22), 228103.10.1103/PhysRevLett.99.228103CrossRefGoogle Scholar
Qian, Y.H., d’Humières, D. & Lallemand, P. 1992 Lattice BGK models for Navier–Stokes equation. Europhys. Lett. 17 (6), 479484.10.1209/0295-5075/17/6/001CrossRefGoogle Scholar
Raz, O. & Leshansky, A.M. 2008 Efficiency of cargo towing by a microswimmer. Phys. Rev. E 77 (5), 055305.CrossRefGoogle ScholarPubMed
Sankaewtong, K., Molina, J.J. & Yamamoto, R. 2024 Efficient navigation of cargo-towing microswimmer in non-uniform flow fields. Phys. Rev. Res. 6 (3), 033305.10.1103/PhysRevResearch.6.033305CrossRefGoogle Scholar
Singh, A.V., Hosseinidoust, Z., Park, B.W., Yasa, O. & Sitti, M. 2017 Microemulsion-based soft bacteria-driven microswimmers for active cargo delivery. ACS Nano 11 (10), 97599769.CrossRefGoogle ScholarPubMed
Sokolov, A. & Aranson, I.S. 2009 Reduction of viscosity in suspension of swimming bacteria. Phys. Rev. Lett. 103 (14), 148101.10.1103/PhysRevLett.103.148101CrossRefGoogle ScholarPubMed
Soni, G.V., Ali, B.J., Hatwalne, Y. & Shivashankar, G.V. 2003 Single particle tracking of correlated bacterial dynamics. Biophys. J. 84 (4), 26342637.10.1016/S0006-3495(03)75068-1CrossRefGoogle ScholarPubMed
Spormann, A.M. 1987 Unusual swimming behavior of a magnetotactic bacterium. FEMS Microbiol. Ecol. 3 (1), 3745.10.1111/j.1574-6968.1987.tb02336.xCrossRefGoogle Scholar
Subramanian, G. & Koch, D.L. 2009 Critical bacterial concentration for the onset of collective swimming. J. Fluid Mech. 632, 359400.CrossRefGoogle Scholar
Subramanian, G., Koch, D.L. & Fitzgibbon, S.R. 2011 The stability of a homogeneous suspension of chemotactic bacteria. Phys. Fluids 23 (4), 041901.10.1063/1.3580271CrossRefGoogle Scholar
Theers, M., Westphal, E., Gompper, G. & Winkler, R.G. 2016 Modeling a spheroidal microswimmer and cooperative swimming in a narrow slit. Soft Matter 12, 73727385.10.1039/C6SM01424KCrossRefGoogle ScholarPubMed
Théry, A., Maaß, C.C. & Lauga, E. 2023 Hydrodynamic interactions between squirmers near walls: far-field dynamics and near-field cluster stability. R. Soc. Open Sci. 10 (6), 230223.10.1098/rsos.230223CrossRefGoogle ScholarPubMed
Wang, S. & Ardekani, A. 2012 Inertial squirmer. Phys. Fluids 24 (10), 101902.CrossRefGoogle Scholar
Wu, M., Roberts, J.W., Kim, S., Koch, D.L. & DeLisa, M.P. 2006 Collective bacterial dynamics revealed using a three-dimensional population-scale defocused particle tracking technique. Appl. Environ. Microbiol. 72 (7), 49874994.10.1128/AEM.00158-06CrossRefGoogle ScholarPubMed
Wu, X.L. & Libchaber, A. 2000 Particle diffusion in a quasi-two-dimensional bacterial bath. Phys. Rev. Lett. 84 (13), 3017.10.1103/PhysRevLett.84.3017CrossRefGoogle Scholar
Xiong, J., Li, X., He, Z., Shi, Y., Pan, T., Zhu, G., Lu, D. & Xin, H. 2024 Light-controlled soft bio-microrobot. Light Sci. Appl. 13 (1), 55.10.1038/s41377-024-01405-5CrossRefGoogle ScholarPubMed
Xu, H., Medina-Sánchez, M., Maitz, M.F., Werner, C. & Schmidt, O.G. 2020 Sperm micromotors for cargo delivery through flowing blood. ACS Nano 14 (3), 29822993.10.1021/acsnano.9b07851CrossRefGoogle ScholarPubMed
Xu, J., Ouyang, Z., Lin, J. & Nie, D. 2024 Modeling the hydrodynamic interaction of two chiral organisms. Phys. Fluids 36 (9), 093350.10.1063/5.0223995CrossRefGoogle Scholar
Xu, J., Wu, T. & Zhang, Y. 2023 Soft microrobots in microfluidic applications. Biomed. Mater. Devices 1 (2), 10281034.10.1007/s44174-023-00071-2CrossRefGoogle Scholar
Yan, X., Xu, J., Zhou, Q., Jin, D., Vong, C.I., Feng, Q., Ng, D.H.L., Bian, L. & Zhang, L. 2019 Molecular cargo delivery using multicellular magnetic microswimmers. Appl. Mater. Today 15, 242–225.CrossRefGoogle Scholar
Yasa, O., Erkoc, P., Alapan, Y. & Sitti, M. 2018 Microalga-powered microswimmers toward active cargo delivery. Adv. Mater. 30 (45), 1804130.10.1002/adma.201804130CrossRefGoogle ScholarPubMed
Ying, Y., Jiang, T., Nie, D. & Lin, J. 2022 Study on the sedimentation and interaction of two squirmers in a vertical channel. Phys. Fluids 34 (10), 103315.10.1063/5.0107133CrossRefGoogle Scholar
Zarepour, A., Khosravi, A., Iravani, S. & Zarrabi, A. 2024 Biohybrid micro/nanorobots: pioneering the next generation of medical technology. Adv. Healthcare Mater. 13 (31), 2402102.CrossRefGoogle ScholarPubMed
Zhang, F. et al. 2021 ACE2 receptor-modified algae-based microrobot for removal of SARS-CoV-2 in wastewater. J. Am. Chem. Soc. 143 (31), 1219412201.10.1021/jacs.1c04933CrossRefGoogle ScholarPubMed
Zhang, F. et al. 2024 Biohybrid microrobots locally and actively deliver drug-loaded nanoparticles to inhibit the progression of lung metastasis. Sci. Adv. 10 (24), eadn6157.10.1126/sciadv.adn6157CrossRefGoogle ScholarPubMed
Supplementary material: File

Nie et al. supplementary movie 1

Interaction between two identical pullers (β1 = β2 = 5) at Res = 0.01.
Download Nie et al. supplementary movie 1(File)
File 354.1 KB
Supplementary material: File

Nie et al. supplementary movie 2

Interaction between two identical pullers (β1 = β2 = 5) at Res = 0.01.
Download Nie et al. supplementary movie 2(File)
File 817.8 KB
Supplementary material: File

Nie et al. supplementary movie 3

Interaction between two identical pullers (β1 = β2 = 5) at Res = 1.
Download Nie et al. supplementary movie 3(File)
File 588.8 KB
Supplementary material: File

Nie et al. supplementary movie 4

Interaction between a leading puller (β2 = 5) and a trailing pusher (β1 = -5) at Res = 0.01.
Download Nie et al. supplementary movie 4(File)
File 769.3 KB
Supplementary material: File

Nie et al. supplementary movie 5

Interaction between a leading puller (β2 = 5) and a trailing pusher (β1 = -5) at Res = 0.1.
Download Nie et al. supplementary movie 5(File)
File 1.1 MB
Supplementary material: File

Nie et al. supplementary movie 6

Interaction between a leading puller (β2 = 5) and a trailing pusher (β1 = -5) at Res = 1.
Download Nie et al. supplementary movie 6(File)
File 725 KB
Supplementary material: File

Nie et al. supplementary movie 7

Interaction between a leading sphere and a trailing pusher (β = -5) at Res = 1.
Download Nie et al. supplementary movie 7(File)
File 508.3 KB
Supplementary material: File

Nie et al. supplementary movie 8

Interaction between a leading sphere and a trailing puller (β = 5) at Res = 1.
Download Nie et al. supplementary movie 8(File)
File 667.9 KB
Supplementary material: File

Nie et al. supplementary movie 9

Motion of a sphere between a leading puller (β = 5) and a trailing pusher (β = -5) at Res = 0.1.
Download Nie et al. supplementary movie 9(File)
File 484.9 KB
Supplementary material: File

Nie et al. supplementary movie 10

Motion of a sphere leading a trailing puller (β = 5) and a trailing pusher (β = -5) at Res = 0.1.
Download Nie et al. supplementary movie 10(File)
File 644.5 KB
Supplementary material: File

Nie et al. supplementary movie 11

Formation of a string consisting of five pullers (β = 5) at Res = 1.
Download Nie et al. supplementary movie 11(File)
File 658.1 KB
Supplementary material: File

Nie et al. supplementary movie 12

Formation of a string consisting of six pullers (β = 5) at Res = 1.
Download Nie et al. supplementary movie 12(File)
File 794.4 KB
Supplementary material: File

Nie et al. supplementary movie 13

Grouping behavior of an array (six particles) of puller-pusher at Res = 1.
Download Nie et al. supplementary movie 13(File)
File 631.4 KB
Supplementary material: File

Nie et al. supplementary movie 14

Grouping behavior of an array (five particles) of puller-pusher at Res = 0.1.
Download Nie et al. supplementary movie 14(File)
File 587.8 KB
Supplementary material: File

Nie et al. supplementary movie 15

Grouping behavior of an array (four particles) of pusher-sphere at Res = 1.
Download Nie et al. supplementary movie 15(File)
File 499.1 KB
Supplementary material: File

Nie et al. supplementary movie 16

Grouping behavior of an array (four particles) of puller-sphere at Res = 1.
Download Nie et al. supplementary movie 16(File)
File 893.3 KB