Skip to main content Accessibility help
Hostname: page-component-5c569c448b-ph4cd Total loading time: 0.364 Render date: 2022-07-03T18:15:20.538Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Internal gravity waves generated by convective plumes

Published online by Cambridge University Press:  07 April 2010

Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, T6G 2G1, Canada
Departments of Physics and of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, T6G 2G7, Canada
Email address for correspondence:


We present experimental results of the generation of internal gravity waves by a turbulent buoyant plume impinging upon the interface between a uniform density layer of fluid and a linearly stratified layer. The wave field is observed and its properties are measured non-intrusively using axisymmetric Schlieren. In particular, we determine the fraction of the energy flux associated with the plume at the neutral buoyancy level that is extracted by the waves. On average, this was found to be approximately 4%. Within the limits of the experimental parameters, the maximum vertical displacement amplitude of waves were found to depend linearly upon the maximum penetration height of the plume beyond the neutral level. The frequency of the waves was found to lie in a narrow range relative to the buoyancy frequency. The results are used to interpret the generation of waves in the atmosphere by convective storms impinging upon the tropopause via the mechanical oscillator effect.

Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Abraham, G. 1963 Jet diffusion in stagnant ambient fluid. Tech. Rep. 29. Delft Hydraulics Lab.Google Scholar
Alexander, M. J. & Barnet, C. 2007 Using satellite observations to constrain parameterizations of gravity wave effects for global models. J. Atmos. Sci. 64, 16521665.CrossRefGoogle Scholar
Alexander, M. J. & Pfister, L. 1995 Gravity wave momentum flux in the lower stratosphere over convection. Geophys. Res. Lett. 22, 20292032.CrossRefGoogle Scholar
Ansong, J. K., Kyba, P. & Sutherland, B. R. 2008 Fountains impinging on a density interface. J. Fluid Mech. 595, 115139.CrossRefGoogle Scholar
Balachandran, N. K. 1980 Gravity waves from thunderstorms. Monthly Weather Rev. 108, 804816.2.0.CO;2>CrossRefGoogle Scholar
Bloomfield, L. J. & Kerr, R. C. 1998 Turbulent fountains in a stratified fluid. J. Fluid Mech. 358, 335356.CrossRefGoogle Scholar
Bloomfield, L. J. & Kerr, R. C. 2000 A theoretical model of a turbulent fountain. J. Fluid Mech. 424, 197216.CrossRefGoogle Scholar
Cerasoli, C. P. 1978 Experiments on buoyant-parcel motion and the generation of internal gravity waves. J. Fluid Mech. 86, 247271.CrossRefGoogle Scholar
Chen, J. C. 1980 Studies on gravitational spreading currents. PhD thesis, California Institute of Technology.Google Scholar
Chen, J. C. & Rodi, W. 1980 Turbulent Buoyant Jets: A Review of Experimental Data. Pergamon.Google Scholar
Clark, T. L., Hauf, T. & Kuettner, J. P. 1986 Convectively forced internal gravity waves: results from two-dimensional numerical experiments. Quart. J. R. Meteor. Soc. 112, 899925.CrossRefGoogle Scholar
Curry, M. J. & Murty, R. C. 1974 Thunderstorm-generated gravity waves. J. Atmos. Sci. 31, 14021408.2.0.CO;2>CrossRefGoogle Scholar
Decamp, S., Kozack, C. & Sutherland, B. R. 2008 Three-dimensional schlieren measurements using inverse tomography. Expts. Fluids 44 (5), 747758.CrossRefGoogle Scholar
Dewan, E. M. & Coauthors 1998 MSX satellite observations of thunderstorm-generated gravity waves in mid-wave infrared images of the upper stratosphere. Geophys. Res. Lett. 25, 939946.CrossRefGoogle Scholar
Didden, N. & Maxworthy, T. 1982 The viscous spreading of plane and axisymmetric gravity currents. J. Fluid Mech. 121, 2742.CrossRefGoogle Scholar
Dohan, K. & Sutherland, B. R. 2003 Internal waves generated from a turbulent mixed region. Phys. Fluids 15, 488498.CrossRefGoogle Scholar
Dohan, K. & Sutherland, B. R. 2005 Numerical and laboratory generation of internal waves from turbulence. Dyn. Atmos. Oceans 40, 4356.CrossRefGoogle Scholar
Dunkerton, T. 1997 The role of gravity waves in the quasi-biennial oscillation. J. Geophys. Res. 102, 2605326076.CrossRefGoogle Scholar
Fischer, H. B., List, E. J., Imberger, J. S. & Brooks, N. H. 1979 Mixing in Inland and Coastal Waters. Academic Press.Google Scholar
Flynn, M. R., Onu, K. & Sutherland, B. R. 2003 Internal wave excitation by a vertically oscillating sphere. J. Fluid Mech. 494, 6593.CrossRefGoogle Scholar
Fovell, R., Durran, D. & Holton, J. R. 1992 Numerical simulations of convectively generated stratospheric gravity waves. J. Atmos. Sci. 49, 14271442.2.0.CO;2>CrossRefGoogle Scholar
Fritts, D. C. & Alexander, M. J. 2003 Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. 41 (1), 3.13.64.CrossRefGoogle Scholar
Fritts, D. C. & Nastrom, G. D. 1992 Sources of mesoscale variability of gravity waves. II. Frontal, convective, and jet stream excitation. J. Atmos. Sci. 49, 111127.2.0.CO;2>CrossRefGoogle Scholar
Gedzelman, S. D. 1983 Short-period atmospheric gravity waves. Monthly Weather Rev. 111 (6), 12931299.2.0.CO;2>CrossRefGoogle Scholar
Grachev, A. I., Danilov, S. D., Kulichkov, S. N. & Svertilov, A. I. 1995 Main characteristics of internal gravity waves from convective storms in the lower troposphere. Atmos. Oceanic Phys. 30 (6), 725733.Google Scholar
Holton, J. R. & Lindzen, R. S. 1972 An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci. 29, 10761080.2.0.CO;2>CrossRefGoogle Scholar
Ivey, G. N. & Blake, S. 1985 Axisymmetric withdrawal and inflow in a density-stratified container. J. Fluid Mech. 161, 115137.CrossRefGoogle Scholar
Karoly, D. J., Roff, G. L. & Reeder, M. J. 1996 Gravity wave activity associated with tropical convection detected in TOGA COARE sounding data. Geophys. Res. Lett. 23 (3), 261264.CrossRefGoogle Scholar
Kaye, N. B. 2008 Turbulent plumes in stratified environments: a review of recent work. Atmos. Ocean 46 (4), 433441.CrossRefGoogle Scholar
Kotsovinos, N. E. 2000 Axisymmetric submerged intrusion in stratified fluid. J. Hydraulic Engng, ASCE 126, 446456.CrossRefGoogle Scholar
Kumar, K. K. 2007 VHF radar investigations on the role of mechanical oscillator effect in exciting convectively generated gravity waves. Geophys. Res. Lett. L01803, doi:10.1029/2006GL027404, 34.CrossRefGoogle Scholar
Lane, T. P. 2008 The vortical response to penetrative convection and the associated gravity-wave generation. Atmos. Sci. Let. 9, 103110.CrossRefGoogle Scholar
Lane, T. P., Reeder, M. J. & Clark, T. L. 2001 Numerical modelling of gravity wave generation by deep tropical convection. J. Atmos. Sci. 58, 12491274.2.0.CO;2>CrossRefGoogle Scholar
Lane, T. P. & Sharman, R. D. 2006 Gravity wave breaking, secondary wave generation, and mixing above deep convection in a three-dimensional cloud model. Geophys. Res. Lett. L23813, doi:10.1029/2006GL027988, 33.CrossRefGoogle Scholar
Larsen, M. F., Swartz, W. E. & Woodman, R. F. 1982 Gravity–wave generation by thunderstorms observed with a vertically-pointing 430 MHz radar. Geophys. Res. Lett. 9 (5), 571574.CrossRefGoogle Scholar
Lee, J. H. W. & Chu, V. H. 2003 Turbulent Buoyant Jets and Plumes: A Langrangian Approach. Kluwer.CrossRefGoogle Scholar
Lemkert, C. J. & Imberger, J. 1993 Axisymmetric intrusive gravity currents in linearly stratified fluids. J. Hydraulic Engng, ASCE 119 (6), 662679.CrossRefGoogle Scholar
Lindzen, R. S. & Holton, J. R. 1968 A theory of the quasi-biennial oscillation. J. Atmos. Sci. 25, 10951107.2.0.CO;2>CrossRefGoogle Scholar
List, E. J. 1982 Mechanics of turbulent buoyant jets and plumes. In Turbulent Buoyant Jets and Plumes. (ed. Rodi, W.), 168. Pergamon.Google Scholar
Lister, J. R. & Kerr, R. C. 1989 The propagation of two-dimensional and axisymmetric gravity currents at a fluid interface. J. Fluid Mech. 203, 215249.CrossRefGoogle Scholar
Lu, D., VanZandt, T. E. & Clark, W. L. 1984 VHF Doppler radar observations of buoyancy waves associated with thunderstorms. J. Atmos. Sci. 41 (2), 272282.2.0.CO;2>CrossRefGoogle Scholar
McDougall, T. J. 1981 Negatively buoyant vertical jets. Tellus 33, 313320.CrossRefGoogle Scholar
McLandress, C. 1998 On the importance of gravity waves in the middle atmosphere and their parameterization in the general circulation models. J. Atmos. Sol.-Terr. Phys. 60, 13571383.CrossRefGoogle Scholar
McLaren, T. I., Pierce, A. D., Fohl, T. & Murphy, B. L. 1973 An investigation of internal gravity waves generated by a buoyantly rising fluid in a stratified medium. J. Fluid Mech. 57, 229241.CrossRefGoogle Scholar
MEDOC Group 1970 Observations of formation of deep water in the Mediterranean. Nature 277, 10371040.Google Scholar
Michaelian, M. E., Maxworthy, T. & Redekopp, L. G. 2002 The coupling between turbulent, penetrative convection and internal waves. Euro. J. Mech. B. Fluids 21, 128.CrossRefGoogle Scholar
Morton, B. R. 1959 Forced plumes. J. Fluid Mech. 5, 151163.CrossRefGoogle Scholar
Morton, B. R. 1971 The choice of conservation equations for plume models. J. Geophys. Res. 76 (30), 74097416.CrossRefGoogle Scholar
Morton, B. R., Taylor, G. & Turner, J. S. 1956 Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. A 234, 123.CrossRefGoogle Scholar
Moustaoui, M., Joseph, B. & Teitelbaum, H. 2004 Mixing layer formation near the tropopause due to gravity wave–critical level interactions in a cloud-resolving model. J. Atmos. Sci. 61 (24), 31123124.CrossRefGoogle Scholar
Mowbray, D. E. & Rarity, B. S. H. 1967 A theoretical and experimental investigation of the phase configuration of internal waves of small amplitude in a density stratified liquid. J. Fluid Mech. 28, 116.CrossRefGoogle Scholar
Onu, K., Flynn, M. R. & Sutherland, B. R. 2003 Schlieren measurement of axisymmetric internal wave amplitudes. Expts. Fluids 35, 2431.CrossRefGoogle Scholar
Oster, G. 1965 Density gradients. Sci. Am. 213, 70.CrossRefGoogle Scholar
Paluszkiewcz, T. & Garwood, R. W. 1994 Deep convective plumes in the ocean. Oceanography 7, 3744.CrossRefGoogle Scholar
Pandya, R. E. & Alexander, M. J. 1999 Linear stratospheric gravity waves above convective thermal forcing. J. Atmos. Sci. 56, 24342446.2.0.CO;2>CrossRefGoogle Scholar
Papanicolaou, P. N. & List, E. J. 1988 Investigations of round vertical turbulent buoyant jets. J. Fluid Mech. 195, 341391.CrossRefGoogle Scholar
Pfister, L., Chan, K. R., Bui, T. P., Bowen, S., Legg, M., Gary, B., Kelly, K., Proffitt, M. & Starr, W. 1993 a Gravity waves generated by a tropical cyclone during the step tropical field program: a case study. J. Geophys. Res. 98 (D5), 86118638.CrossRefGoogle Scholar
Pfister, L., Scott, S. & Loewenstein, M. 1993 b Mesoscale disturbances in the tropical stratosphere exrefd by convection: observations and effects on the stratospheric momentum budget. J. Atmos. Sci. 50 (8), 10581075.2.0.CO;2>CrossRefGoogle Scholar
Pierce, A. D. & Coroniti, S. C. 1966 A mechanism for the generation of acoustic-gravity waves during thunderstorm formation. Nature 210, 12091210.CrossRefGoogle Scholar
Priestley, C. H. B. & Ball, F. K. 1955 Continuous convection from an isolated source of heat. Quart. J. R. Meteorol. Soc. 81 (384), 144156.CrossRefGoogle Scholar
Schott, F., Visbeck, M. & Fischer, J. 1993 Observations of vertical currents and convection in the Central Greenland Sea during the winter of 1988/89. J. Geophys. Res. 98, 1440114421.CrossRefGoogle Scholar
Send, U. & Marshall, J. 1995 Integral effects of deep convection. J. Phys. Oceanogr. 25, 855872.2.0.CO;2>CrossRefGoogle Scholar
Song, I.-S., Chun, H.-Y. & Lane, T. P. 2003 Generation mechanisms of convectively forced internal gravity waves and their propagation to the stratosphere. J. Atmos. Sci. 60, 19601980.2.0.CO;2>CrossRefGoogle Scholar
Stull, R. B. 1976 Internal gravity waves generated by penetrative convection. J. Atmos. Sci. 33, 12791286.2.0.CO;2>CrossRefGoogle Scholar
Sutherland, B. R., Dalziel, S. B., Hughes, G. O. & Linden, P. F. 1999 Visualization and measurement of internal waves by ‘synthetic schlieren’. Part 1. Vertically oscillating cylinder. J. Fluid Mech. 390, 93126.CrossRefGoogle Scholar
Sutherland, B. R., Flynn, M. R. & Dohan, K. 2004 Internal wave excitation from a collapsing mixed region. Deep Sea Res. II 51, 28892904.CrossRefGoogle Scholar
Sutherland, B. R. & Linden, P. F. 2002 Internal wave excitation by a vertically oscillating elliptical cylinder. Phys. Fluids 14, 721731.CrossRefGoogle Scholar
Townsend, A. A. 1964 Natural convection in water over an ice surface. Quart. J. R. Meteorol. Soc. 90, 248259.CrossRefGoogle Scholar
Townsend, A. A. 1965 Excitation of internal waves by a turbulent boundary layer. J. Fluid Mech. 22, 241252.CrossRefGoogle Scholar
Townsend, A. A. 1966 Internal waves produced by a convective layer. J. Fluid Mech. 24, 307319.CrossRefGoogle Scholar
Tsuda, T., Murayama, Y., Wiryosumarto, H., Harijono, S. W. B. & Kato, S. 1994 Radiosonde observations of equatorial atmosphere dynamics over Indonesia. 2. Characteristics of gravity waves. J. Geophys. Res. 99 (D5), 1050710516.CrossRefGoogle Scholar
Turner, J. S. 1966 Jets and plumes with negative or reversing buoyancy. J. Fluid Mech. 26, 779792.CrossRefGoogle Scholar
Turner, J. S. 1972 On the energy deficiency in self-preserving convective flows. J. Fluid Mech. 53, 217226.CrossRefGoogle Scholar
Turner, J. S. 1973 Buoyancy Effects in Fluids. Cambridge University Press.CrossRefGoogle Scholar
Vincent, R. A. & Alexander, M. J. 2000 Gravity waves in the tropical lower stratosphere: an observational study of seasonal and interannual variability. J. Geophys. Res. 105 (D14), 1797117982.CrossRefGoogle Scholar
Wang, P. K. 2004 A cloud model interpretation of jumping cirrus above storm top. Geophys. Res. Lett. L18106, doi:10.1029/2004GL020787, 31.CrossRefGoogle Scholar
Zatsepin, A. G. & Shapiro, G. I. 1982 A study of axisymmetric intrusions in a stratified fluid. Izvestiya, Atmos. Ocean Phys. 18, 7780.Google Scholar
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Internal gravity waves generated by convective plumes
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Internal gravity waves generated by convective plumes
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Internal gravity waves generated by convective plumes
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *