Skip to main content Accessibility help
×
Home
Hostname: page-component-5d6d958fb5-ls6xp Total loading time: 0.815 Render date: 2022-11-29T10:39:05.817Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Inverse cascade suppression and shear-layer formation in magnetohydrodynamic turbulence subject to a guide field and misaligned rotation

Published online by Cambridge University Press:  25 January 2022

Santiago J. Benavides*
Affiliation:
Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA02139USA
Keaton J. Burns
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA02139USA Center for Computational Astrophysics, Flatiron Institute, New York, NY10010USA
Basile Gallet
Affiliation:
Université Paris-Saclay, CNRS, CEA, Service de Physique de l'Etat Condensé, 91191Gif-sur-Yvette, France
James Y-K. Cho
Affiliation:
Center for Computational Astrophysics, Flatiron Institute, New York, NY10010USA
Glenn R. Flierl
Affiliation:
Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA02139USA
*
Email address for correspondence: santib@mit.edu

Abstract

Astrophysical flows are often subject to both rotation and large-scale background magnetic fields. Individually, each is known to two-dimensionalize the flow in the perpendicular plane. In realistic settings, both of these effects are simultaneously present and, importantly, need not be aligned. In this work, we numerically investigate three-dimensional forced magnetohydrodynamic turbulence subject to the competing effects of global rotation and a perpendicular background magnetic field. We focus on the case of a strong background field and find that increasing the rotation rate from zero produces significant changes in the structure of the turbulent flow. Starting with a two-dimensional inverse energy cascade at zero rotation, the flow first transitions to a forward cascade of kinetic energy, then to a shear-layer dominated regime and finally to a second shear-layer regime where the kinetic energy flux is strongly suppressed and the energy transfer is mediated by the induced magnetic field. We show that the first two transitions occur at distinct values of the Rossby number, and the third occurs at a distinct value of the Lehnert number. The three-dimensional results are confirmed using an asymptotic two-dimensional, three-component model, which allows us to extend our results to the planetary-relevant case of an arbitrary angle between the rotation vector and guide field. More generally, our results demonstrate that, when considering the simultaneous limits of strong rotation and a strong guide field, the order in which those limits are taken matters in the misaligned case.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agrawal, R., Alexakis, A., Brachet, M.E. & Tuckerman, L.S. 2020 Turbulent cascade, bottleneck, and thermalized spectrum in hyperviscous flows. Phys. Rev. Fluids 5, 024601.CrossRefGoogle Scholar
Alexakis, A. 2011 Two-dimensional behavior of three-dimensional magnetohydrodynamic flow with a strong guiding field. Phys. Rev. E 84, 056330.CrossRefGoogle ScholarPubMed
Alexakis, A. 2017 Helically decomposed turbulence. J. Fluid Mech. 812, 752770.CrossRefGoogle Scholar
Alexakis, A. & Biferale, L. 2018 Cascades and transitions in turbulent flows. Phys. Rep. 767-769, 1101.CrossRefGoogle Scholar
Arbic, B.K. & Flierl, G.R. 2004 Effects of mean flow direction on energy, isotropy, and coherence of baroclinically unstable beta-plane geostrophic turbulence. J. Phys. Oceanogr. 34 (1), 7793.2.0.CO;2>CrossRefGoogle Scholar
Armitage, P.J. 2011 Dynamics of protoplanetary disks. Annu. Rev. Astron. Astrophys. 49 (1), 195236.CrossRefGoogle Scholar
Aurnou, J.M., Calkins, M.A., Cheng, J.S., Julien, K., King, E.M., Nieves, D., Soderlund, K.M. & Stellmach, S. 2015 Rotating convective turbulence in earth and planetary cores. Phys. Earth Planet. Inter. 246, 5271.CrossRefGoogle Scholar
Baker, N.T., Pothérat, A., Davoust, L. & Debray, F. 2018 Inverse and direct energy cascades in three-dimensional magnetohydrodynamic turbulence at low magnetic Reynolds number. Phys. Rev. Lett. 120, 224502.CrossRefGoogle ScholarPubMed
Baklouti, F.S., Khlifi, A., Salhi, A., Godeferd, F., Cambon, C. & Lehner, T. 2019 Kinetic-magnetic energy exchanges in rotating magnetohydrodynamic turbulence. J. Turbul. 20 (4), 263284.CrossRefGoogle Scholar
Bell, N.K. & Nazarenko, S.V. 2019 Rotating magnetohydrodynamic turbulence. J. Phys. A: Math. Theor. 52 (44), 445501.CrossRefGoogle Scholar
Benavides, S.J. 2019 Geophysical high-order suite for turbulence. GitHub Repository. Available at: https://github.com/s-benavides/GHOST/tree/pre-release-2, Commit: 2caaa43aad8b9378ec154bfbc26e4c 85d947a4cc.Google Scholar
Benavides, S.J. 2020 Rot2d3c. GitHub repository. Available at: https://github.com/s-benavides/Rot2D3C, Commit: 2d511888b78c451fc7b26352916a6ff40ee98b93.Google Scholar
Benavides, S.J. & Alexakis, A. 2017 Critical transitions in thin layer turbulence. J. Fluid Mech. 822, 364385.CrossRefGoogle Scholar
Benavides, S.J. & Flierl, G.R. 2020 Two-dimensional partially ionized magnetohydrodynamic turbulence. J. Fluid Mech. 900, A28.CrossRefGoogle Scholar
Biferale, L., Buzzicotti, M. & Linkmann, M. 2017 From two-dimensional to three-dimensional turbulence through two-dimensional three-component flows. Phys. Fluids 29 (11), 111101.CrossRefGoogle Scholar
Bigot, B. & Galtier, S. 2011 Two-dimensional state in driven magnetohydrodynamic turbulence. Phys. Rev. E 83, 026405.CrossRefGoogle Scholar
Boffetta, G. & Ecke, R.E. 2012 Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44 (1), 427451.CrossRefGoogle Scholar
Buzzicotti, M., Aluie, H., Biferale, L. & Linkmann, M. 2018 Energy transfer in turbulence under rotation. Phys. Rev. Fluids 3, 034802.CrossRefGoogle Scholar
Campagne, A., Gallet, B., Moisy, F. & Cortet, P.-P. 2014 Direct and inverse energy cascades in a forced rotating turbulence experiment. Phys. Fluids 26 (12), 125112.CrossRefGoogle Scholar
Celani, A., Musacchio, S. & Vincenzi, D. 2010 Turbulence in more than two and less than three dimensions. Phys. Rev. Lett. 104, 184506.CrossRefGoogle ScholarPubMed
Chan, C.-K., Mitra, D. & Brandenburg, A. 2012 Dynamics of saturated energy condensation in two-dimensional turbulence. Phys. Rev. E 85, 036315.CrossRefGoogle ScholarPubMed
Charney, J.G. 1971 Geostrophic turbulence. J. Atmos. Sci. 28 (6), 10871095.2.0.CO;2>CrossRefGoogle Scholar
Chertkov, M., Connaughton, C., Kolokolov, I. & Lebedev, V. 2007 Dynamics of energy condensation in two-dimensional turbulence. Phys. Rev. Lett. 99, 084501.CrossRefGoogle ScholarPubMed
Cho, J.Y-K. 2008 Atmospheric dynamics of tidally synchronized extrasolar planets. Phil. Trans. R. Soc. A: Math. Phys. Engng Sci. 366 (1884), 44774488.CrossRefGoogle ScholarPubMed
Cho, J.Y-K. & Polvani, L.M. 1996 a The emergence of jets and vortices in freely evolving, shallow-water turbulence on a sphere. Phys. Fluids 8 (6), 15311552.CrossRefGoogle Scholar
Cho, J.Y-K. & Polvani, L.M. 1996 b The morphogenesis of bands and zonal winds in the atmospheres on the giant outer planets. Science 273 (5273), 335337.CrossRefGoogle ScholarPubMed
Davidson, P.A. 2013 Turbulence in Rotating, Stratified and Electrically Conducting Fluids. Cambridge University Press.CrossRefGoogle Scholar
Deusebio, E., Boffetta, G., Lindborg, E. & Musacchio, S. 2014 Dimensional transition in rotating turbulence. Phys. Rev. E 90, 023005.CrossRefGoogle ScholarPubMed
Diamond, P.H., Itoh, S.-I., Itoh, K. & Hahm, T.S. 2005 Zonal flows in plasma–a review. Plasma Phys. Control. Fusion 47 (5), R35R161.CrossRefGoogle Scholar
Dietrich, W & Jones, C.A. 2018 Anelastic spherical dynamos with radially variable electrical conductivity. Icarus 305, 1532.CrossRefGoogle Scholar
Favier, B.F.N., Godeferd, F.S. & Cambon, C. 2012 On the effect of rotation on magnetohydrodynamic turbulence at high magnetic Reynolds number. Geophys. Astrophys. Fluid Dyn. 106 (1), 89111.CrossRefGoogle Scholar
Favier, B., Godeferd, F.S., Cambon, C. & Delache, A. 2010 On the two-dimensionalization of quasistatic magnetohydrodynamic turbulence. Phys. Fluids 22 (7), 075104.CrossRefGoogle Scholar
Fjortoft, R. 1953 On the changes in the spectral distribution of kinetic energy for twodimensional, nondivergent flow. Tellus 5 (3), 225230.CrossRefGoogle Scholar
French, M., Becker, A., Lorenzen, W., Nettelmann, N., Bethkenhagen, M., Wicht, J. & Redmer, R. 2012 Ab initio simulations for material properties along the jupiter adiabat. Astrophys. J. Suppl. Ser. 202 (1), 5.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence: The Legacy of AN Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Fromang, S. 2005 The effect of MHD turbulence on massive protoplanetary disk fragmentation. Astron. Astrophys. 441 (1), 18.CrossRefGoogle Scholar
Gallet, B. 2015 Exact two-dimensionalization of rapidly rotating large-Reynolds-number flows. J. Fluid Mech. 783, 412447.CrossRefGoogle Scholar
Gallet, B. & Doering, C.R. 2015 Exact two-dimensionalization of low-magnetic-Reynolds-number flows subject to a strong magnetic field. J. Fluid Mech. 773, 154177.CrossRefGoogle Scholar
Gallet, B. & Ferrari, R. 2021 A quantitative scaling theory for meridional heat transport in planetary atmospheres and oceans. AGU Adv. 2 (3), e2020AV000362.CrossRefGoogle Scholar
Gallet, B. & Young, W.R. 2013 A two-dimensional vortex condensate at high Reynolds number. J. Fluid Mech. 715, 359388.CrossRefGoogle Scholar
Galtier, S. 2014 Weak turbulence theory for rotating magnetohydrodynamics and planetary flows. J. Fluid Mech. 757 (6), 114154.CrossRefGoogle Scholar
Held, I.M. & Larichev, V.D. 1996 A scaling theory for horizontally homogeneous, baroclinically unstable flow on a beta plane. J. Atmos. Sci. 53 (7), 946952.2.0.CO;2>CrossRefGoogle Scholar
Herring, J.R. 1974 Approach of axisymmetric turbulence to isotropy. Phys. Fluids 17 (5), 859872.CrossRefGoogle Scholar
Joos, M., Hennebelle, P. & Ciardi, A. 2012 Protostellar disk formation and transport of angular momentum during magnetized core collapse. Astron. Astrophys. 543, A128.CrossRefGoogle Scholar
van Kan, A. & Alexakis, A. 2019 Condensates in thin-layer turbulence. J. Fluid Mech. 864, 490518.CrossRefGoogle Scholar
van Kan, A. & Alexakis, A. 2020 Critical transition in fast-rotating turbulence within highly elongated domains. J. Fluid Mech. 899, A33.CrossRefGoogle Scholar
van Kan, A. & Alexakis, A. 2021 Energy cascades in rapidly rotating and stratified turbulence within elongated domains. arXiv:2106.06973.CrossRefGoogle Scholar
Kaspi, Y., et al. 2018 Jupiter's atmospheric jet streams extend thousands of kilometres deep. Nature 555, 223.CrossRefGoogle ScholarPubMed
Kraichnan, R.H. 1967 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10 (7), 14171423.CrossRefGoogle Scholar
Lehnert, B. 1955 The decay of magneto-turbulence in the presence of a magnetic field and coriolis force. Q. Appl. Maths 12 (4), 321341.CrossRefGoogle Scholar
Liu, J., Goldreich, P. & Stevenson, D.J. 2008 Constraints on deep-seated zonal winds inside Jupiter and Saturn. Icarus 196 (2), 653664.CrossRefGoogle Scholar
Maffei, S., Calkins, M.A., Julien, K. & Marti, P. 2019 Magnetic quenching of the inverse cascade in rapidly rotating convective turbulence. Phys. Rev. Fluids 4, 041801.CrossRefGoogle Scholar
Marino, R., Pouquet, A. & Rosenberg, D. 2015 Resolving the paradox of oceanic large-scale balance and small-scale mixing. Phys. Rev. Lett. 114, 114504.CrossRefGoogle ScholarPubMed
Menu, M.D., Galtier, S. & Petitdemange, L. 2019 Inverse cascade of hybrid helicity in $b \varOmega$-MHD turbulence. Phys. Rev. Fluids 4, 073701.CrossRefGoogle Scholar
Mininni, P.D. & Pouquet, A. 2010 Rotating helical turbulence. I. Global evolution and spectral behavior. Phys. Fluids 22 (3), 035105.CrossRefGoogle Scholar
Mininni, P.D., Rosenberg, D., Reddy, R. & Pouquet, A. 2011 A hybrid MPI–openmp scheme for scalable parallel pseudospectral computations for fluid turbulence. Parallel. Comput. 37 (6), 316326.CrossRefGoogle Scholar
Montgomery, D. & Turner, L. 1981 Anisotropic magnetohydrodynamic turbulence in a strong external magnetic field. Phys. Fluids 24 (5), 825831.CrossRefGoogle Scholar
Moore, K.M., et al. 2018 A complex dynamo inferred from the hemispheric dichotomy of Jupiter's magnetic field. Nature 561 (7721), 7678.CrossRefGoogle ScholarPubMed
Nazarenko, S. 2007 2D enslaving of MHD turbulence. New J. Phys. 9 (8), 307.CrossRefGoogle Scholar
Otani, N.F. 1993 A fast kinematic dynamo in two-dimensional time-dependent flows. J. Fluid Mech. 253, 327340.CrossRefGoogle Scholar
Oughton, S., Matthaeus, W.H. & Dmitruk, P. 2017 Reduced MHD in astrophysical applications: Two-dimensional or three-dimensional? Astrophys. J. 839 (1), 2.CrossRefGoogle Scholar
Pouquet, A. & Marino, R. 2013 Geophysical turbulence and the duality of the energy flow across scales. Phys. Rev. Lett. 111, 234501.CrossRefGoogle Scholar
Pouquet, A., Rosenberg, D., Stawarz, J.E. & Marino, R. 2019 Helicity dynamics, inverse, and bidirectional cascades in fluid and magnetohydrodynamic turbulence: A brief review. Earth Space Sci. 6 (3), 351369.CrossRefGoogle Scholar
Rhines, P.B. 1975 Waves and turbulence on a beta-plane. J. Fluid Mech. 69 (3), 417443.CrossRefGoogle Scholar
Seshasayanan, K. & Alexakis, A. 2016 a Critical behavior in the inverse to forward energy transition in two-dimensional magnetohydrodynamic flow. Phys. Rev. E 93 (1), 013104.CrossRefGoogle ScholarPubMed
Seshasayanan, K. & Alexakis, A. 2016 b Turbulent 2.5-dimensional dynamos. J. Fluid Mech. 799, 246264.CrossRefGoogle Scholar
Seshasayanan, K. & Alexakis, A. 2018 Condensates in rotating turbulent flows. J. Fluid Mech. 841, 434462.CrossRefGoogle Scholar
Seshasayanan, K., Benavides, S.J. & Alexakis, A. 2014 On the edge of an inverse cascade. Phys. Rev. E - Stat. Nonlinear Soft Matt. Phys. 90 (5), 15.Google ScholarPubMed
Seshasayanan, K., Gallet, B. & Alexakis, A. 2017 Transition to turbulent dynamo saturation. Phys. Rev. Lett. 119, 204503.CrossRefGoogle ScholarPubMed
Shebalin, J.V. 2006 Ideal homogeneous magnetohydrodynamic turbulence in the presence of rotation and a mean magnetic field. J. Plasma Phys. 72 (4), 507524.CrossRefGoogle Scholar
Simon, J.B., Bai, X.-N., Armitage, P.J., Stone, J.M. & Beckwith, K. 2013 Turbulence in the outer regions of protoplanetary disks. II. Strong accretion driven by a vertical magnetic field. Astrophys. J. 775 (1), 73.CrossRefGoogle Scholar
Simon, J.B., Bai, X.-N., Flaherty, K.M. & Hughes, A.M. 2018 Origin of weak turbulence in the outer regions of protoplanetary disks. Astrophys. J. 865 (1), 10.CrossRefGoogle Scholar
Smith, L.M., Chasnov, J.R. & Waleffe, F. 1996 Crossover from two- to three-dimensional turbulence. Phys. Rev. Lett. 77, 24672470.CrossRefGoogle ScholarPubMed
Smith, S.G.L. & Tobias, S.M. 2004 Vortex dynamos. J. Fluid Mech. 498, 121.CrossRefGoogle Scholar
Smith, L.M. & Waleffe, F. 1999 Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence. Phys. Fluids 11 (6), 16081622.CrossRefGoogle Scholar
Sommeria, J. & Moreau, R. 1982 Why, how, and when, mhd turbulence becomes two-dimensional. J. Fluid Mech. 118, 507518.CrossRefGoogle Scholar
Strauss, H.R. 1976 Nonlinear, three-dimensional magnetohydrodynamics of noncircular tokamaks. Phys. Fluids 19 (1), 134140.CrossRefGoogle Scholar
Sujovolsky, N.E. & Mininni, P.D. 2016 Tridimensional to bidimensional transition in magnetohydrodynamic turbulence with a guide field and kinetic helicity injection. Phys. Rev. Fluids 1, 054407.CrossRefGoogle Scholar
Thess, A. & Zikanov, O. 2007 Transition from two-dimensional to three-dimensional magnetohydrodynamic turbulence. J. Fluid Mech. 579, 383412.CrossRefGoogle Scholar
Tobias, S.M. 2021 The turbulent dynamo. J. Fluid Mech. 912, P1.CrossRefGoogle ScholarPubMed
Tobias, S.M., Diamond, P.H. & Hughes, D.W. 2007 $\beta$-plane magnetohydrodynamic turbulence in the solar tachocline. Astrophys. J. 667, 113116.CrossRefGoogle Scholar
Vallis, G.K. 2017 Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Vorobev, A., Zikanov, O., Davidson, P.A. & Knaepen, B. 2005 Anisotropy of magnetohydrodynamic turbulence at low magnetic Reynolds number. Phys. Fluids 17 (12), 125105.CrossRefGoogle Scholar
Xia, H., Byrne, D., Falkovich, G. & Shats, M. 2011 Upscale energy transfer in thick turbulent fluid layers. Nat. Phys. 7 (4), 321324.CrossRefGoogle Scholar
Xia, H., Punzmann, H., Falkovich, G. & Shats, M.G. 2008 Turbulence-condensate interaction in two dimensions. Phys. Rev. Lett. 101, 194504.CrossRefGoogle ScholarPubMed
2
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Inverse cascade suppression and shear-layer formation in magnetohydrodynamic turbulence subject to a guide field and misaligned rotation
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Inverse cascade suppression and shear-layer formation in magnetohydrodynamic turbulence subject to a guide field and misaligned rotation
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Inverse cascade suppression and shear-layer formation in magnetohydrodynamic turbulence subject to a guide field and misaligned rotation
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *