Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-q7jt5 Total loading time: 0.312 Render date: 2021-03-05T07:48:35.157Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Investigation of the influence of combustion-induced thermal expansion on two-point turbulence statistics using conditioned structure functions

Published online by Cambridge University Press:  20 March 2019

V. A. Sabelnikov
Affiliation:
Department of Multi-Physics for Energetics, ONERA - The French Aerospace Lab., F-91761 Palaiseau, France Laboratory of Jet Engine Simulations, Central Aerohydrodynamic Institute (TsAGI), 140180 Zhukovsky, Russian Federation
A. N. Lipatnikov
Affiliation:
Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Göteborg 412 96, Sweden
S. Nishiki
Affiliation:
Department of Mechanical Engineering, Kagoshima University, Kagoshima 890-0065, Japan
T. Hasegawa
Affiliation:
Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan
Corresponding

Abstract

The second-order structure functions (SFs) of the velocity field, which characterize the velocity difference at two points, are widely used in research into non-reacting turbulent flows. In the present paper, the approach is extended in order to study the influence of combustion-induced thermal expansion on turbulent flow within a premixed flame brush. For this purpose, SFs conditioned to various combinations of mixture states at two different points (reactant–reactant, reactant–product, product–product, etc.) are introduced in the paper and a relevant exact transport equation is derived in the appendix. Subsequently, in order to demonstrate the capabilities of the newly developed approach for advancing the understanding of turbulent reacting flows, the conditioned SFs are extracted from three-dimensional (3-D) direct numerical simulation data obtained from two statistically 1-D planar, fully developed, weakly turbulent, premixed, single-step-chemistry flames characterized by significantly different (7.53 and 2.50) density ratios, with all other things being approximately equal. Obtained results show that the conditioned SFs differ significantly from standard mean SFs and convey a large amount of important information on various local phenomena that stem from the influence of combustion-induced thermal expansion on turbulent flow. In particular, the conditioned SFs not only (i) indicate a number of already known local phenomena discussed in the paper, but also (ii) reveal a less recognized phenomenon such as substantial influence of combustion-induced thermal expansion on turbulence in constant-density unburned reactants and even (iii) allow us to detect a new phenomenon such as the appearance of strong local velocity perturbations (shear layers) within flamelets. Moreover, SFs conditioned to heat-release zones indicate a highly anisotropic influence of combustion-induced thermal expansion on the evolution of small-scale two-point velocity differences within flamelets, with the effects being opposite (an increase or a decrease) for different components of the local velocity vector.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below.

References

Antonia, R. A., Smalley, R. J., Zhou, T., Anselmet, F. & Danaila, L. 2003 Similarity of energy structure functions in decaying homogeneous isotropic turbulence. J. Fluid Mech. 487, 245269.CrossRefGoogle Scholar
Aspden, A. J., Day, M. S. & Bell, J. B. 2016 Three-dimensional direct numerical simulation of turbulent lean premixed methane combustion with detailed kinetics. Combust. Flame 165, 266283.CrossRefGoogle Scholar
Ballal, D. R. 1979 The structure of premixed turbulent flames. Proc. R. Soc. Lond. A 367, 353380.CrossRefGoogle Scholar
Bray, K. N. C. 1995 Turbulent transport in flames. Proc. R. Soc. Lond. A 451, 231256.CrossRefGoogle Scholar
Bray, K. N. C., Champion, M., Libby, P. A. & Swaminathan, N. 2011 Scalar dissipation and mean reaction rates in premixed turbulent combustion. Combust. Flame 158, 20172022.CrossRefGoogle Scholar
Chaudhuri, S., Kolla, H., Dave, H. L., Hawkes, E. R., Chen, J. H. & Law, C. K. 2017 Flame thickness and conditional scalar dissipation rate in a premixed temporal turbulent reacting jet. Combust. Flame 184, 273285.CrossRefGoogle Scholar
Danaila, L., Anselmet, F., Zhou, T. & Antonia, R. A. 1999 Similarity of energy structure functions in decaying homogeneous isotropic turbulence. J. Fluid Mech. 391, 359372.CrossRefGoogle Scholar
Davidson, P. A. 2015 Turbulence: An Introduction for Scientists and Engineers, 2nd edn. Oxford University Press.CrossRefGoogle Scholar
Drew, D. A. & Passman, S. L. 2006 Theory of Multicomponent Fluids. Springer.Google Scholar
Driscoll, J. F. 2008 Turbulent premixed combustion: flamelet structure and its effect on turbulent burning velocities. Prog. Energy Combust. Sci. 34, 91134.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Furukawa, J., Noguchi, Y. & Hirano, T. 2000 Investigation of flame generated turbulence in a large-scale and low-intensity turbulent premixed flame with a 3-element electrostatic probe and a 2-D LDV. Combust. Sci. Technol. 154, 163178.CrossRefGoogle Scholar
Furukawa, J., Noguchi, Y., Hirano, T. & Williams, F. A. 2002 Anisotropic enhancement of turbulence in large-scale, low-intensity turbulent premixed propane-air flames. J. Fluid Mech. 462, 209243.CrossRefGoogle Scholar
Furukawa, J., Okamoto, K. & Hirano, T. 1996 Turbulence characteristics within the local reaction zone thickness of a high-intensity turbulent premixed flame. Proc. Combust. Inst. 26, 405412.CrossRefGoogle Scholar
Gökalp, I., Shepherd, I. G. & Cheng, R. K. 1988 Spectral behavior of velocity fluctuations in premixed turbulent flames. Combust. Flame 71, 313323.CrossRefGoogle Scholar
Günther, R. 1983 Turbulence properties of flames and their measurement. Prog. Energy Combust. Sci. 9, 105154.CrossRefGoogle Scholar
Hamlington, P. E., Poludnenko, A. Y. & Oran, E. S. 2011 Interactions between turbulence and flames in premixed reacting flows. Phys. Fluids 23, 125111.CrossRefGoogle Scholar
Hill, R. J. 1997 Applicability of Kolmogorov’s and Monin’s equations of turbulence. J. Fluid Mech. 353, 6781.CrossRefGoogle Scholar
Hill, R. J. 2001 Equations relating structure functions of all orders. J. Fluid Mech. 434, 379388.CrossRefGoogle Scholar
Hill, R. J. 2002 Exact second-order structure-function relationships. J. Fluid Mech. 468, 317326.CrossRefGoogle Scholar
Im, Y. H., Huh, K. Y., Nishiki, S. & Hasegawa, T. 2004 Zone conditional assessment of flame-generated turbulence with DNS database of a turbulent premixed flame. Combust. Flame 137, 478488.CrossRefGoogle Scholar
Kadowaki, S. & Hasegawa, T. 2005 Numerical simulation of dynamics of premixed flames: flame instability and vortex–flame interaction. Prog. Energy Combust. Sci. 31, 193241.CrossRefGoogle Scholar
Karlovitz, B., Denniston, D. W. & Wells, F. E. 1951 Investigation of turbulent flames. J. Chem. Phys. 19, 541547.CrossRefGoogle Scholar
Kataoka, I. 1986 Local instant formulation of two-phase flow. Intl J. Multiphase Flow 12, 745758.CrossRefGoogle Scholar
Kim, J., Bassenne, M., Towery, C. A. Z., Hamlington, P. E., Poludnenko, A. Y. & Urzay, J. 2018 The cross-scale physical-space transfer of kinetic energy in turbulent premixed flames. J. Fluid. Mech. 848, 78116.CrossRefGoogle Scholar
Kolla, H., Hawkes, E. R., Kerstein, A. R., Swaminathan, N. & Chen, J. H. 2014 On velocity and reactive scalar spectra in turbulent premixed flames. J. Fluid Mech. 75, 456487.CrossRefGoogle Scholar
Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl. Akad. Nauk SSSR 30, 299303.Google Scholar
Kuznetsov, V. R. 1982 Limiting laws of propagation of a turbulent flame. Combust. Explos. Shock Waves 18, 172179.CrossRefGoogle Scholar
Kuznetsov, V. R. & Sabelnikov, V. A. 1990 Turbulence and Combustion. Hemisphere.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics. Pergamon Press.Google Scholar
Lapointe, S. & Blanquart, G. 2016 Fuel and chemistry effects in high Karlovitz premixed turbulent flames. Combust. Flame 167, 294–307.CrossRefGoogle Scholar
Lesieur, M., Métais, O. & Comte, P. 2005 Large-Eddy Simulations of Turbulence. Cambridge University Press.CrossRefGoogle Scholar
Libby, P. A. 1975 On the prediction of intermittent turbulent flows. J. Fluid Mech. 68, 273295.CrossRefGoogle Scholar
Libby, P. A. & Bray, K. N. C. 1981 Countergradient diffusion in premixed turbulent flames. AIAA J. 19, 205213.CrossRefGoogle Scholar
Lipatnikov, A. N. 2009 Can we characterize turbulence in premixed flames? Combust. Flame 156, 12421247.CrossRefGoogle Scholar
Lipatnikov, A. N. & Chomiak, J. 2010 Effects of premixed flames on turbulence and turbulent scalar transport. Prog. Energy Combust. Sci. 36, 1102.CrossRefGoogle Scholar
Lipatnikov, A. N., Chomiak, J., Sabelnikov, V. A., Nishiki, S. & Hasegawa, T. 2015a Unburned mixture fingers in premixed turbulent flames. Proc. Combust. Inst. 35, 14011408.CrossRefGoogle Scholar
Lipatnikov, A. N., Chomiak, J., Sabelnikov, V. A., Nishiki, S. & Hasegawa, T. 2015b Influence of heat release in a premixed flame on weakly turbulent flow of unburned gas: a DNS study. In 25th International Colloquium on Dynamics of Explosions and Reactive Systems. ICDERS.Google Scholar
Lipatnikov, A. N., Chomiak, J., Sabelnikov, V. A., Nishiki, S. & Hasegawa, T. 2018a A DNS study of the physical mechanisms associated with density ratio influence on turbulent burning velocity in premixed flames. Combust. Theor. Model. 22, 131155.CrossRefGoogle Scholar
Lipatnikov, A. N., Nishiki, S. & Hasegawa, T. 2014 A direct numerical simulation study of vorticity transformation in weakly turbulent premixed flames. Phys. Fluids 26, 105104.CrossRefGoogle Scholar
Lipatnikov, A. N., Nishiki, S. & Hasegawa, T. 2015c DNS assessment of relation between mean reaction and scalar dissipation rates in the flamelet regime of premixed turbulent combustion. Combust. Theor. Model. 19, 309328.CrossRefGoogle Scholar
Lipatnikov, A. N., Nishiki, S. & Hasegawa, T. 2019 A DNS assessment of linear relations between filtered reaction rate, flame surface density, and scalar dissipation rate in a weakly turbulent premixed flame. Combust. Theor. Model. (in press).CrossRefGoogle Scholar
Lipatnikov, A. N., Sabelnikov, V. A., Chakraborty, N., Nishiki, S. & Hasegawa, T. 2018b A DNS study of closure relations for convection flux term in transport equation for mean reaction rate in turbulent flow. Flow Turbul. Combust. 100, 7592.CrossRefGoogle Scholar
Lipatnikov, A. N., Sabelnikov, V. A., Nishiki, S. & Hasegawa, T. 2017 Flamelet perturbations and flame surface density transport in weakly turbulent premixed combustion. Combust. Theor. Model. 21, 205227.CrossRefGoogle Scholar
Lipatnikov, A. N., Sabelnikov, V. A., Nishiki, S. & Hasegawa, T. 2018c Combustion-induced local shear layers within premixed flamelets in weakly turbulent flows. Phys. Fluids 30, 085101.CrossRefGoogle Scholar
Lipatnikov, A. N., Sabelnikov, V. A., Nishiki, S. & Hasegawa, T. 2018d Does flame-generated vorticity increase turbulent burning velocity? Phys. Fluids 30, 081702.CrossRefGoogle Scholar
Lipatnikov, A. N., Sabelnikov, V. A., Nishiki, S., Hasegawa, T. & Chakraborty, N. 2015d DNS assessment of a simple model for evaluating velocity conditioned to unburned gas in premixed turbulent flame. Flow Turbul. Combust. 94, 513526.CrossRefGoogle Scholar
Matalon, M. 2007 Intrinsic flame instabilities in premixed and nonpremixed combustion. Annu. Rev. Fluid Mech. 39, 163191.CrossRefGoogle Scholar
Monin, A. S. 1959 The theory of locally isotropic turbulence. Dokl. Akad. Nauk SSSR 125, 515518.Google Scholar
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 2. MIT Press.Google Scholar
Mura, A., Robin, V., Champion, M. & Hasegawa, T. 2009 Small scale features of velocity and scalar fields in turbulent premixed flames. Flow Turbul. Combust. 82, 339358.CrossRefGoogle Scholar
Mura, A., Tsuboi, K. & Hasegawa, T. 2008 Modelling of the correlation between velocity and reactive scalar gradients in turbulent premixed flames based on DNS data. Combust. Theor. Model. 12, 671698.CrossRefGoogle Scholar
Nishiki, S., Hasegawa, T., Borghi, R. & Himeno, R. 2002 Modeling of flame-generated turbulence based on direct numerical simulation databases. Proc. Combust. Inst. 29, 20172022.CrossRefGoogle Scholar
Nishiki, S., Hasegawa, T., Borghi, R. & Himeno, R. 2006 Modelling of turbulent scalar flux in turbulent premixed flames based on DNS databases. Combust. Theor. Model. 10, 3955.CrossRefGoogle Scholar
O’Brien, J., Towery, C. A. Z., Hamlington, P. E., Ihme, M., Poludnenko, A. Y. & Urzay, J. 2017 The cross-scale physical-space transfer of kinetic energy in turbulent premixed flames. Proc. Combust. Inst. 36, 19671975.CrossRefGoogle Scholar
Obukhov, A. M. 1941 The spectral energy distribution in a turbulent flow. Dokl. Akad. Nauk SSSR 32 (1), 2224.Google Scholar
Poinsot, T., Veynante, D. & Candel, S. 1991 Quenching processes and premixed turbulent combustion diagrams. J. Fluid Mech. 228, 561606.Google Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Renard, P.-H., Thévenin, D., Rolon, J. C. & Candel, S. 2000 Dynamics of flame/vortex interactions. Prog. Energy Combust. Sci. 26, 225282.CrossRefGoogle Scholar
Roberts, W. L., Driscoll, J. F., Drake, M. C. & Goss, L. P. 1993 Images of the quenching of a flame by vortex – to quantify regimes of turbulent combustion. Combust. Flame 94, 5869.CrossRefGoogle Scholar
Robin, V., Mura, A. & Champion, M. 2011 Direct and indirect thermal expansion effects in turbulent premixed flames. J. Fluid Mech. 689, 149182.CrossRefGoogle Scholar
Robin, V., Mura, A., Champion, M. & Hasegawa, T. 2010 Modeling of the effects of thermal expansion on scalar turbulent fluxes in turbulent premixed flames. Combust. Sci. Technol. 182, 449464.CrossRefGoogle Scholar
Sabelnikov, V. A. & Lipatnikov, A. N. 2017 Recent advances in understanding of thermal expansion effects in premixed turbulent flames. Annu. Rev. Fluid Mech. 49, 91117.CrossRefGoogle Scholar
Sabelnikov, V. A., Lipatnikov, A. N., Chakraborty, N., Nishiki, S. & Hasegawa, T. 2016 A transport equation for reaction rate in turbulent flows. Phys. Fluids 28, 081701.CrossRefGoogle Scholar
Sabelnikov, V. A., Lipatnikov, A. N., Chakraborty, N., Nishiki, S. & Hasegawa, T. 2017 A balance equation for the mean rate of product creation in premixed turbulent flames. Proc. Combust. Inst. 36, 18931901.CrossRefGoogle Scholar
Sabelnikov, V. A., Lipatnikov, A. N., Nishiki, S. & Hasegawa, T. 2019 Application of conditioned structure functions to exploring influence of premixed combustion on two-point turbulence statistics. Proc. Combust. Inst. 37, 24332441.CrossRefGoogle Scholar
Scurlock, A. C. & Grover, J. H. 1953 Propagation of turbulent flames. Proc. Combust. Inst. 4, 645658.CrossRefGoogle Scholar
Towery, C. A. Z., Poludnenko, A. Y., Urzay, J., O’Brien, J., Ihme, M. & Hamlington, P. E. 2016 Spectral kinetic energy transfer in turbulent premixed reacting flows. Phys. Rev. E 93, 053115.Google ScholarPubMed
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.Google Scholar
Tsinober, A. 2009 An Informal Conceptual Introduction to Turbulence. Springer.CrossRefGoogle Scholar
Uranakara, H. A., Chaudhuri, S., Dave, H. L., Arias, P. G. & Im, H. G. 2016 A flame particle tracking analysis of turbulence–chemistry interaction in hydrogen–air premixed flames. Combust. Flame 163, 220240.CrossRefGoogle Scholar
Videto, B. D. & Santavicca, D. A. 1990 Flame–turbulence interactions in a freely-propagating, premixed flame. Combust. Sci. Technol. 70, 4773.CrossRefGoogle Scholar
Wabel, T. M., Skiba, A. W. & Driscoll, J. F. 2018 Evolution of turbulence through a broadened preheat zone in a premixed piloted Bunsen flame from conditionally-averaged velocity measurements. Combust. Flame 188, 1327.CrossRefGoogle Scholar
Wang, H., Hawkes, E. R., Chen, J. H., Zhou, B., Li, Z. & Aldén, M. 2017 Direct numerical simulations of a high Karlovitz number laboratory premixed jet flame – an analysis of flame stretch and flame thickening. J. Fluid Mech. 815, 511536.CrossRefGoogle Scholar
Whitman, S. H. R., Towery, C. A. Z., Poludnenko, A. Y. & Hamlington, P. E. 2019 Scaling and collapse of conditional velocity structure functions in turbulent premixed flames. Proc. Combust. Inst. 37, 25272535.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 23
Total number of PDF views: 246 *
View data table for this chart

* Views captured on Cambridge Core between 20th March 2019 - 5th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Investigation of the influence of combustion-induced thermal expansion on two-point turbulence statistics using conditioned structure functions
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Investigation of the influence of combustion-induced thermal expansion on two-point turbulence statistics using conditioned structure functions
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Investigation of the influence of combustion-induced thermal expansion on two-point turbulence statistics using conditioned structure functions
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *