Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-pcn4s Total loading time: 0.417 Render date: 2022-05-28T07:45:43.752Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Local instabilities in magnetized rotational flows: a short-wavelength approach

Published online by Cambridge University Press:  12 November 2014

O. N. Kirillov*
Affiliation:
Helmholtz-Zentrum Dresden-Rossendorf, PO Box 510119, D-01314 Dresden, Germany
F. Stefani
Affiliation:
Helmholtz-Zentrum Dresden-Rossendorf, PO Box 510119, D-01314 Dresden, Germany
Y. Fukumoto
Affiliation:
Institute of Mathematics for Industry, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
*
Email address for correspondence: o.kirillov@hzdr.de

Abstract

We perform a local stability analysis of rotational flows in the presence of a constant vertical magnetic field and an azimuthal magnetic field with a general radial dependence. Employing the short-wavelength approximation we develop a unified framework for the investigation of the standard, helical and azimuthal version of the magnetorotational instability (MRI), as well as of current-driven kink-type instabilities. Considering the viscous and resistive setup, our main focus is on the case of small magnetic Prandtl numbers which applies e.g. to liquid-metal experiments but also to the colder parts of accretion disks. We show that the inductionless versions of MRI that were previously thought to be restricted to comparatively steep rotation profiles extend well to the Keplerian case if only the azimuthal field slightly deviates from its current-free (in the fluid) profile. We find an explicit criterion separating the pure azimuthal inductionless MRI from the regime where this instability is mixed with the Tayler instability. We further demonstrate that for particular parameter configurations the azimuthal MRI originates as a result of a dissipation-induced instability of Chandrasekhar’s equipartition solution of ideal magnetohydrodynamics.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acheson, D. J. 1978 On the instability of toroidal magnetic fields and differential rotation in stars. Phil. Trans. R. Soc. Lond. A 289 (1363), 459500.CrossRefGoogle Scholar
Acheson, D. J. & Hide, R. 1973 Hydromagnetics of rotating fluids. Rep. Prog. Phys. 36, 159221.CrossRefGoogle Scholar
Altmeyer, S., Hoffmann, C. & Lücke, M. 2011 Islands of instability for growth of spiral vortices in the Taylor–Couette system with and without axial through flow. Phys. Rev. E 84, 046308.CrossRefGoogle ScholarPubMed
Armitage, P. J. 2011 Protoplanetary disks and their evolution. Annu. Rev. Astron. Astrophys. 49, 67117.CrossRefGoogle Scholar
Balbus, S. A. & Hawley, J. F. 1991 A powerful local shear instability in weakly magnetized disks 1. Linear analysis. Astrophys. J. 376, 214222.CrossRefGoogle Scholar
Balbus, S. A. & Hawley, J. F. 1992 A powerful local shear instability in weakly magnetized disks 4. Nonaxisymmetric perturbations. Astrophys. J. 400, 610621.CrossRefGoogle Scholar
Bayly, B. J. 1988 Three-dimensional centrifugal-type instabilities in inviscid two-dimensional flows. Phys. Fluids 31, 5664.CrossRefGoogle Scholar
Bilharz, H. 1944 Bemerkung zu einem Satze von Hurwitz. Z. Angew. Math. Mech. 24, 7782.CrossRefGoogle Scholar
Bogoyavlenskij, O. I. 2004 Unsteady equipartition MHD solutions. J. Math. Phys. 45, 381390.CrossRefGoogle Scholar
Brandenburg, A., Nordlund, A., Stein, R. F. & Torkelsson, U. 1995 Dynamo-generated turbulence and large-scale magnetic fields in a Keplerian shear flow. Astrophys. J. 446, 741754.CrossRefGoogle Scholar
Chandrasekhar, S. 1956 On the stability of the simplest solution of the equations of hydromagnetics. Proc. Natl Acad. Sci. USA 42, 273276.CrossRefGoogle Scholar
Chandrasekhar, S. 1960 The stability of non-dissipative Couette flow in hydromagnetics. Proc. Natl Acad. Sci. USA 46, 253257.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.Google Scholar
Dobrokhotov, S. & Shafarevich, A. 1992 Parametrix and the asymptotics of localized solutions of the Navier–Stokes equations in $R^{3}$ , linearized on a smooth flow. Math. Notes 51, 4754.CrossRefGoogle Scholar
Done, C., Gierlinski, M. & Kubota, A. 2007 Modelling the behaviour of accretion flows in X-ray binaries. Astron. Astrophys. Rev. 15, 166.CrossRefGoogle Scholar
Eckhardt, B. & Yao, D. 1995 Local stability analysis along Lagrangian paths. Chaos, Solitons Fractals 5 (11), 20732088.CrossRefGoogle Scholar
Eckhoff, K. S. 1981 On stability for symmetric hyperbolic systems, I. J. Differ. Equ. 40, 94115.CrossRefGoogle Scholar
Eckhoff, K. S. 1987 Linear waves and stability in ideal magnetohydrodynamics. Phys. Fluids 30, 36733685.CrossRefGoogle Scholar
Fleming, T. P., Stone, J. M. & Hawley, J. F. 2010 The effect of resistivity on the nonlinear stage of the magnetorotational instability in accretion disks. Astrophys. J. 530, 464477.CrossRefGoogle Scholar
Friedlander, S. & Lipton-Lifschitz, A. 2003 Localized instabilities in fluids. In Handbook of Mathematical Fluid Dynamics, vol. II (ed. Friedlander, S. J. & Serre, D.), pp. 289353. Elsevier.CrossRefGoogle Scholar
Friedlander, S. & Vishik, M. M. 1995 On stability and instability criteria for magnetohydrodynamics. Chaos 5, 416423.CrossRefGoogle ScholarPubMed
Fromang, S. & Papaloizou, J. 2007 MHD simulations of the magnetorotational instability in a shearing box with zero net flux. Astron. Astrophys. 476, 11131122.CrossRefGoogle Scholar
Fuchs, H., Rädler, K.-H. & Rheinhardt, M. 1999 On self-killing and self-creating dynamos. Astron. Nachr. 320, 127131.3.0.CO;2-W>CrossRefGoogle Scholar
Gailitis, A., Lielausis, O., Dement’ev, S., Platacis, E., Cifersons, A., Gerbeth, G., Gundrum, T., Stefani, F., Christen, M., Hänel, H. & Will, G. 2000 Detection of a flow induced magnetic field eigenmode in the Riga dynamo facility. Phys. Rev. Lett. 84, 43654368.CrossRefGoogle ScholarPubMed
Goedbloed, H., Keppens, R. & Poedts, S. 2010 Advanced Magnetohydrodynamics. Cambridge University Press.CrossRefGoogle Scholar
Golovin, S. V. & Krutikov, M. K. 2012 Complete classification of stationary flows with constant total pressure of ideal incompressible infinitely conducting fluid. J. Phys. A: Math. Theor. 45, 235501.CrossRefGoogle Scholar
Hattori, Y. & Fukumoto, Y. 2003 Short-wavelength stability analysis of thin vortex rings. Phys. Fluids 15 (10), 31513163.CrossRefGoogle Scholar
Herault, J., Rincon, F., Cossu, C., Lesur, G., Ogilvie, G. I. & Longaretti, P.-Y. 2011 Periodic magnetorotational dynamo action as a prototype of nonlinear magnetic-field generation in shear flows. Phys. Rev. E 84 (10), 036321.CrossRefGoogle ScholarPubMed
Hollerbach, R. & Rüdiger, G. 2005 New type of magnetorotational instability in cylindrical Taylor–Couette flow. Phys. Rev. Lett. 95 (12), 124501.CrossRefGoogle ScholarPubMed
Hollerbach, R., Teeluck, V. & Rüdiger, G. 2010 Nonaxisymmetric magnetorotational instabilities in cylindrical Taylor–Couette flow. Phys. Rev. Lett. 104, 044502.CrossRefGoogle ScholarPubMed
Howard, L. N. & Gupta, A. S. 1962 On the hydrodynamic and hydromagnetic stability of swirling flows. J. Fluid Mech. 14, 463476.CrossRefGoogle Scholar
Ji, H. & Balbus, S. 2013 Angular momentum transport in astrophysics and in the lab. Phys. Today 66 (8), 2733.CrossRefGoogle Scholar
Ji, H., Goodman, J. & Kageyama, A. 2001 Magnetorotational instability in a rotating liquid metal annulus. Mon. Not. R. Astron. Soc. 325 (2), L1L5.CrossRefGoogle Scholar
Kagan, D. & Wheeler, J. C. 2014 The role of the magnetorotational instability in the Sun. Astrophys. J. 787 (1), 21.CrossRefGoogle Scholar
Käpylä, P. J. & Korpi, M. J. 2011 Magnetorotational instability driven dynamos at low magnetic Prandtl numbers. Mon. Not. R. Astron. Soc. 413, 901907.CrossRefGoogle Scholar
Kirillov, O. N. 2009 Campbell diagrams of weakly anisotropic flexible rotors. Proc. R. Soc. Lond. A 465, 27032723.CrossRefGoogle Scholar
Kirillov, O. N. 2013 Nonconservative Stability Problems of Modern Physics, De Gruyter Studies in Mathematical Physics, vol. 14. De Gruyter.CrossRefGoogle Scholar
Kirillov, O. N. & Stefani, F. 2010 On the relation of standard and helical magnetorotational instability. Astrophys. J. 712, 5268.CrossRefGoogle Scholar
Kirillov, O. N. & Stefani, F. 2011 Paradoxes of magnetorotational instability and their geometrical resolution. Phys. Rev. E 84 (3), 036304.CrossRefGoogle ScholarPubMed
Kirillov, O. N. & Stefani, F. 2012 Standard and helical magnetorotational instability: How singularities create paradoxal phenomena in MHD. Acta Appl. Math. 120, 177198.CrossRefGoogle Scholar
Kirillov, O. N. & Stefani, F. 2013 Extending the range of the inductionless magnetorotational instability. Phys. Rev. Lett. 111, 061103.CrossRefGoogle ScholarPubMed
Kirillov, O. N., Stefani, F. & Fukumoto, Y. 2012 A unifying picture of helical and azimuthal MRI, and the universal significance of the Liu limit. Astrophys. J. 756, 83.CrossRefGoogle Scholar
Kirillov, O. N., Stefani, F. & Fukumoto, Y. 2014 Instabilities of rotational flows in azimuthal magnetic fields of arbitrary radial dependence. Fluid Dyn. Res. 46, 031403.CrossRefGoogle Scholar
Kirillov, O. N. & Verhulst, F. 2010 Paradoxes of dissipation-induced destabilization or who opened Whitney’s umbrella? Z. Angew. Math. Mech. 90 (6), 462488.CrossRefGoogle Scholar
Krolik, J. H. 1998 Active Galactic Nuclei. Princeton University Press.Google Scholar
Krueger, E. R., Gross, A. & Di Prima, R. C. 1966 On relative importance of Taylor-vortex and non-axisymmetric modes in flow between rotating cylinders. J. Fluid Mech. 24 (3), 521538.CrossRefGoogle Scholar
Landman, M. J. & Saffman, P. G. 1987 The three-dimensional instability of strained vortices in a viscous fluid. Phys. Fluids 30, 23392342.CrossRefGoogle Scholar
Lesur, G. & Longaretti, P.-Y. 2007 Impact of dimensionless numbers on the efficiency of magnetorotational instability induced turbulent transport. Mon. Not. R. Astron. Soc. 378 (8), 14711480.CrossRefGoogle Scholar
Lifschitz, A. 1989 Magnetohydrodynamics and Spectral Theory. Kluwer.CrossRefGoogle Scholar
Lifschitz, A. 1991 Short wavelength instabilities of incompressible three-dimensional flows and generation of vorticity. Phys. Lett. A 157, 481486.CrossRefGoogle Scholar
Lifschitz, A. & Hameiri, E. 1991 Local stability conditions in fluid dynamics. Phys. Fluids A 3, 26442651.CrossRefGoogle Scholar
Liu, W., Goodman, J., Herron, I. & Ji, H. 2006 Helical magnetorotational instability in magnetized Taylor–Couette flow. Phys. Rev. E 74 (5), 056302.CrossRefGoogle Scholar
Marcus, P. S., Pei, S., Jiang, C.-H. & Hassanzadeh, P. 2013 Three-dimensional vortices generated by self-replication in stably stratified rotating shear flows. Phys. Rev. Lett. 111 (8), 084501.CrossRefGoogle ScholarPubMed
Michael, D. H. 1954 The stability of an incompressible electrically conducting fluid rotating about an axis when current flows parallel to the axis. Mathematika 1, 4550.CrossRefGoogle Scholar
Monchaux, R., Berhanu, M., Bourgoin, M., Moulin, M., Odier, Ph., Pinton, J.-F., Volk, R., Fauve, S., Mordant, N., Petrelis, F., Chiffaudel, A., Daviaud, F., Dubrulle, B., Gasquet, C., Mari, L. & Ravelet, F. 2007 Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium. Phys. Rev. Lett. 98, 044502.CrossRefGoogle Scholar
Montgomery, D. 1993 Hartmann, Lundquist, and Reynolds: the role of dimensionless numbers in nonlinear magnetofluid behavior. Plasma Phys. Control. Fusion 35, B105B113.CrossRefGoogle Scholar
Müller, U. & Stieglitz, R. 2000 Can the Earth’s magnetic field be simulated in the laboratory? Naturwissenschaften 87, 381390.CrossRefGoogle ScholarPubMed
Nornberg, M. D., Ji, H., Schartman, E & Roach, A. 2010 Observation of magnetocoriolis waves in a liquid metal Taylor–Couette experiment. Phys. Rev. Lett. 104, 074501.CrossRefGoogle Scholar
Ogilvie, G. I. & Pringle, J. E. 1996 The non-axisymmetric instability of a cylindrical shear flow containing an azimuthal magnetic field. Mon. Not. R. Astron. Soc. 279, 152164.CrossRefGoogle Scholar
Oishi, J. S. & Mac Low, M.-M. 2011 Magnetorotational turbulence transports angular momentum in stratified disks with low magnetic Prandtl number but magnetic Reynolds number above a critical value. Astrophys. J. 740, 18.CrossRefGoogle Scholar
Petitdemange, L., Dormy, E. & Balbus, S. A. 2008 Magnetostrophic MRI in the Earth’s outer core. Geophys. Res. Lett. 35, L15305.CrossRefGoogle Scholar
Priede, J. 2011 Inviscid helical magnetorotational instability in cylindrical Taylor–Couette flow. Phys. Rev. E 84, 066314.CrossRefGoogle ScholarPubMed
Rüdiger, G., Gellert, M., Schultz, M. & Hollerbach, R. 2010 Dissipative Taylor–Couette flows under the influence of helical magnetic fields. Phys. Rev. E 82, 016319.Google ScholarPubMed
Rüdiger, G. & Hollerbach, R. 2007 Comment on ‘Helical magnetorotational instability in magnetized Taylor–Couette flow’. Phys. Rev. E 76, 068301.CrossRefGoogle Scholar
Rüdiger, G., Kitchatinov, L. & Hollerbach, R. 2013 Magnetic Processes in Astrophysics. Wiley-VCH.CrossRefGoogle Scholar
Rüdiger, G. & Schultz, M. 2010 Tayler instability of toroidal magnetic fields in MHD Taylor–Couette flows. Astron. Nachr. 331, 121129.CrossRefGoogle Scholar
Seilmayer, M., Galindo, V., Gerbeth, G., Gundrum, T., Stefani, F., Gellert, M., Rüdiger, G., Schultz, M. & Hollerbach, R. 2014 Experimental evidence for non-axisymmetric magnetorotational instability in an azimuthal magnetic field. Phys. Rev. Lett. 113, 024505.CrossRefGoogle Scholar
Seilmayer, M., Stefani, F., Gundrum, T., Weier, T., Gerbeth, G., Gellert, M. & Rüdiger, G. 2012 Experimental evidence for a transient Tayler instability in a cylindrical liquid metal column. Phys. Rev. Lett. 108, 244501.CrossRefGoogle Scholar
Shi, J., Krolik, J. H. & Hirose, S. 2010 What is the numerically converged amplitude of magnetohydrodynamics turbulence in stratified shearing boxes? Astrophys. J. 708, 17161727.CrossRefGoogle Scholar
Sisan, D. R., Mujica, N., Tillotson, W. A., Huang, Y.-M., Dorland, W., Hassam, A. B., Antonsen, T. M. & Lathrop, D. P. 2004 Experimental observation and characterization of the magnetorotational instability. Phys. Rev. Lett. 93, 114502.CrossRefGoogle ScholarPubMed
Spruit, H. C. Dynamo action by differential rotation in a stably stratified stellar interior. Astron. Astrophys. 381, 923932.CrossRefGoogle Scholar
Squire, J. & Bhattacharjee, A. 2014 Nonmodal growth of the magnetorotational instability. Phys. Rev. Lett. 113, 025006.CrossRefGoogle Scholar
Stefani, F., Eckert, S., Gerbeth, G., Giesecke, A., Gundrum, T., Steglich, C., Weier, T. & Wustmann, B. 2012 DRESDYN—a new facility for MHD experiments with liquid sodium. Magnetohydrodynamics 48, 103113.Google Scholar
Stefani, F., Gailitis, A. & Gerbeth, G. 2008 Magnetohydrodynamic experiments on cosmic magnetic fields. Z. Angew. Math. Mech. 88, 930954.CrossRefGoogle Scholar
Stefani, F., Gerbeth, G., Gundrum, T., Hollerbach, R., Priede, J., Rüdiger, G. & Szklarski, J. 2009 Helical magnetorotational instability in a Taylor–Couette flow with strongly reduced Ekman pumping. Phys. Rev. E 80, 066303.CrossRefGoogle Scholar
Stefani, F., Gundrum, T., Gerbeth, G., Rüdiger, G., Schultz, M., Szklarski, J. & Hollerbach, R. 2006a Experimental evidence for magnetorotational instability in a Taylor–Couette flow under the influence of a helical magnetic field. Phys. Rev. Lett. 97, 184502.CrossRefGoogle Scholar
Stefani, F., Gundrum, T., Gerbeth, G., Rüdiger, G., Szklarski, J. & Hollerbach, R. 2006b Experiments on the magnetorotational instability in helical magnetic fields. New J. Phys. 9, 295.CrossRefGoogle Scholar
Tayler, R. 1973 The adiabatic stability of stars containing magnetic fields. Mon. Not. R. Astron. Soc. 161, 365380.CrossRefGoogle Scholar
Umurhan, O. M. 2010 Low magnetic-Prandtl number flow configurations for cold astrophysical disk models: speculation and analysis. Astron. Astrophys. 513, A47.CrossRefGoogle Scholar
Velikhov, E. P. 1959 Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field. Sov. Phys. JETP-USSR 9, 995998.Google Scholar
Vishik, M. & Friedlander, S. 1998 Asymptotic methods for magnetohydrodynamic instability. Q. Appl. Maths 56, 377398.CrossRefGoogle Scholar
Weber, N., Galindo, V., Stefani, F., Weier, T. & Wondrak, T. 2013 Numerical simulation of the Tayler instability in liquid metals. New J. Phys. 15, 043034.CrossRefGoogle Scholar
34
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Local instabilities in magnetized rotational flows: a short-wavelength approach
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Local instabilities in magnetized rotational flows: a short-wavelength approach
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Local instabilities in magnetized rotational flows: a short-wavelength approach
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *