Hostname: page-component-cb9f654ff-plnhv Total loading time: 0.001 Render date: 2025-08-29T08:54:12.810Z Has data issue: false hasContentIssue false

Marangoni-flow-driven hysteresis and azimuthal symmetry breaking in evaporating binary droplets

Published online by Cambridge University Press:  29 August 2025

Duarte Rocha*
Affiliation:
Physics of Fluids Department, Max-Planck Center Twente for Complex Fluid Dynamics and J.M. Burgers Centre for Fluid Dynamics, University of Twente, PO Box 217, 7500AE Enschede, The Netherlands
Detlef Lohse*
Affiliation:
Physics of Fluids Department, Max-Planck Center Twente for Complex Fluid Dynamics and J.M. Burgers Centre for Fluid Dynamics, University of Twente, PO Box 217, 7500AE Enschede, The Netherlands Max-Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
Christian Diddens
Affiliation:
Physics of Fluids Department, Max-Planck Center Twente for Complex Fluid Dynamics and J.M. Burgers Centre for Fluid Dynamics, University of Twente, PO Box 217, 7500AE Enschede, The Netherlands
*
Corresponding authors: Duarte Rocha, d.rocha@utwente.nl; Detlef Lohse, d.lohse@utwente.nl; Christian Diddens, c.diddens@utwente.nl
Corresponding authors: Duarte Rocha, d.rocha@utwente.nl; Detlef Lohse, d.lohse@utwente.nl; Christian Diddens, c.diddens@utwente.nl

Abstract

The non-uniform evaporation rate at the liquid–gas interface of binary droplets induces solutal Marangoni flows. In glycerol–water mixtures (positive Marangoni number, where the more volatile fluid has higher surface tension), these flows stabilise into steady patterns. Conversely, in water–ethanol mixtures (negative Marangoni number, where the less volatile fluid has higher surface tension), Marangoni instabilities emerge, producing seemingly chaotic flows. This behaviour arises from the opposing signs of the Marangoni number. Perturbations locally reducing surface tension at the interface drive Marangoni flows away from the perturbed region. Continuity of the fluid enforces a return flow, drawing fluid from the bulk towards the interface. In mixtures with a negative Marangoni number, preferential evaporation of the lower-surface-tension component leads to a higher concentration of the higher-surface-tension component at the interface as compared with the bulk. The return flow therefore creates a positive feedback loop, further reducing surface tension in the perturbed region and enhancing the instability. This study investigates bistable quasi-stationary solutions in evaporating binary droplets with negative Marangoni numbers (e.g. water–ethanol) and examines symmetry breaking across a range of Marangoni numbers and contact angles. Bistable domains exhibit hysteresis. Remarkably, flat droplets (small contact angles) show instabilities at much lower critical Marangoni numbers than droplets with larger contact angles. Our numerical simulations reveal that interactions between droplet height profiles and non-uniform evaporation rates trigger azimuthal Marangoni instabilities in flat droplets. This geometrically confined instability can even destabilise mixtures with positive Marangoni numbers, particularly for concave liquid–gas interfaces, as in wells. Finally, through a Lyapunov exponent analysis, we confirm the chaotic nature of flows in droplets with a negative Marangoni number. We emphasise that the numerical models are intentionally simplified to isolate and clarify the underlying mechanisms, rather than to quantitatively predict specific experimental outcomes; in particular, the model becomes increasingly limited in regimes of rapid evaporation.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Babor, L. & Kuhlmann, H.C. 2023 Linear stability of thermocapillary flow in a droplet attached to a hot or cold substrate. Phys. Rev. Fluids 8 (11), 114003.10.1103/PhysRevFluids.8.114003CrossRefGoogle Scholar
Bauer, C., Frink, A. & Kreckel, R. 2002 Introduction to the GiNaC framework for symbolic computation within the C++ programming language. J. Symb. Comput. 33 (1), 112.10.1006/jsco.2001.0494CrossRefGoogle Scholar
Bénard, H. 1901 Les Tourbillons Cellulaires dans une Nappe Liquide Propageant de la Chaleur par Convection en Régime Permanent. Gauthier-Villars.Google Scholar
Bennacer, R. & Sefiane, K. 2014 Vortices, dissipation and flow transition in volatile binary drops. J. Fluid Mech. 749, 649665.10.1017/jfm.2014.220CrossRefGoogle Scholar
Brutin, D. & Starov, V. 2018 Recent advances in droplet wetting and evaporation. Chem. Soc. Rev. 47 (2), 558585.10.1039/C6CS00902FCrossRefGoogle ScholarPubMed
Christiansen, F. & Rugh, H.H. 1997 Computing Lyapunov spectra with continuous Gram–Schmidt orthonormalization. Nonlinearity 10 (5), 1063.10.1088/0951-7715/10/5/004CrossRefGoogle Scholar
Christy, J.R.E., Hamamoto, Y. & Sefiane, K. 2011 Flow transition within an evaporating binary mixture sessile drop. Phys. Rev. Lett. 106 (20), 205701.10.1103/PhysRevLett.106.205701CrossRefGoogle ScholarPubMed
D’Ambrosio, H.-M., Wilson, S.K., Wray, A.W. & Duffy, B.R. 2023 The effect of the spatial variation of the evaporative flux on the deposition from a thin sessile droplet. J. Fluid Mech. 970, A1.10.1017/jfm.2023.503CrossRefGoogle Scholar
Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R. & Witten, T.A. 1997 Capillary flow as the cause of ring stains from dried liquid drops. Nature 389 (6653), 827829.10.1038/39827CrossRefGoogle Scholar
Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R. & Witten, T.A. 2000 Contact line deposits in an evaporating drop. Phys. Rev. E 62 (1), 756.10.1103/PhysRevE.62.756CrossRefGoogle Scholar
Diddens, C. 2017 Detailed finite element method modeling of evaporating multi-component droplets. J. Comput. Phys. 340, 670687.10.1016/j.jcp.2017.03.049CrossRefGoogle Scholar
Diddens, C., Kuerten, J.G.M., van der Geld, C.W.M. & Wijshoff, H.M.A. 2017 a Modeling the evaporation of sessile multi-component droplets. J. Colloid Interface Sci. 487, 426436.10.1016/j.jcis.2016.10.030CrossRefGoogle ScholarPubMed
Diddens, C., Li, Y. & Lohse, D. 2021 Competing Marangoni and Rayleigh convection in evaporating binary droplets. J. Fluid Mech. 914, A23.10.1017/jfm.2020.734CrossRefGoogle Scholar
Diddens, C. & Rocha, D. 2024 Bifurcation tracking on moving meshes and with consideration of azimuthal symmetry breaking instabilities. J. Comput. Phys. 518, 113306.10.1016/j.jcp.2024.113306CrossRefGoogle Scholar
Diddens, C., Tan, H., Lv, P., Versluis, M., Kuerten, J.G.M., Zhang, X. & Lohse, D. 2017 b Evaporating pure, binary and ternary droplets: thermal effects and axial symmetry breaking. J. Fluid Mech. 823, 470497.10.1017/jfm.2017.312CrossRefGoogle Scholar
Dugas, V., Broutin, J. & Souteyrand, E. 2005 Droplet evaporation study applied to DNA chip manufacturing. Langmuir 21 (20), 91309136.10.1021/la050764yCrossRefGoogle ScholarPubMed
Edwards, A.M.J., Atkinson, P.S., Cheung, C.S., Liang, H., Fairhurst, D.J. & Ouali, F.F. 2018 Density-driven flows in evaporating binary liquid droplets. Phys. Rev. Lett. 121 (18), 184501.10.1103/PhysRevLett.121.184501CrossRefGoogle ScholarPubMed
Eggers, J. & Pismen, L.M. 2010 Nonlocal description of evaporating drops. Phys. Fluids 22 (11), 112101.10.1063/1.3491133CrossRefGoogle Scholar
Fukatani, Y., Orejon, D., Kita, Y., Takata, Y., Kim, J. & Sefiane, K. 2016 Effect of ambient temperature and relative humidity on interfacial temperature during early stages of drop evaporation. Phys. Rev. E 93 (4), 043103.10.1103/PhysRevE.93.043103CrossRefGoogle ScholarPubMed
Gelderblom, H., Diddens, C. & Marin, A. 2022 Evaporation-driven liquid flow in sessile droplets. Soft Matt. 18 (45), 85358553.10.1039/D2SM00931ECrossRefGoogle ScholarPubMed
Golubitsky, M. & Schaeffer, D. 1979 A theory for imperfect bifurcation via singularity theory. Commun. Pure Appl. Maths 32 (1), 2198.10.1002/cpa.3160320103CrossRefGoogle Scholar
He, M. & Qiu, H. 2016 Internal flow patterns of an evaporating multicomponent droplet on a flat surface. Intl J. Therm. Sci. 100, 1019.10.1016/j.ijthermalsci.2015.09.006CrossRefGoogle Scholar
Heil, M. & Hazel, A.L. 2006 oomph-lib - an object-oriented multi-physics finite-element library. In Fluid-Structure Interaction: Modelling, Simulation, Optimisation, pp. 1949. Springer.10.1007/3-540-34596-5_2CrossRefGoogle Scholar
Hosoi, A.E. & Bush, J.W.M. 2001 Evaporative instabilities in climbing films. J. Fluid Mech. 442, 217239.10.1017/S0022112001005018CrossRefGoogle Scholar
Hu, H. & Larson, R.G. 2002 Evaporation of a sessile droplet on a substrate. J. Phys. Chem. B 106 (6), 13341344.10.1021/jp0118322CrossRefGoogle Scholar
Hu, H. & Larson, R.G. 2006 Marangoni effect reverses coffee-ring depositions. J. Phys. Chem. B 110 (14), 70907094.10.1021/jp0609232CrossRefGoogle ScholarPubMed
Karapetsas, G., Matar, O.K., Valluri, P. & Sefiane, K. 2012 Convective rolls and hydrothermal waves in evaporating sessile drops. Langmuir 28 (31), 1143311439.10.1021/la3019088CrossRefGoogle ScholarPubMed
Karpitschka, S., Liebig, F. & Riegler, H. 2017 Marangoni contraction of evaporating sessile droplets of binary mixtures. Langmuir 33 (19), 46824687.10.1021/acs.langmuir.7b00740CrossRefGoogle ScholarPubMed
Kim, J. 2007 Spray cooling heat transfer: the state of the art. Intl J. Heat Fluid Flow 28 (4), 753767.10.1016/j.ijheatfluidflow.2006.09.003CrossRefGoogle Scholar
Kita, Y., Okauchi, Y., Fukatani, Y., Orejon, D., Kohno, M., Takata, Y. & Sefiane, K. 2018 Quantifying vapor transfer into evaporating ethanol drops in a humid atmosphere. Phys. Chem. Chem. Phys. 20 (29), 1943019440.10.1039/C8CP02521ECrossRefGoogle Scholar
Li, Y., Diddens, C., Lv, P., Wijshoff, H., Versluis, M. & Lohse, D. 2019 Gravitational effect in evaporating binary microdroplets. Phys. Rev. Lett. 122 (11), 114501.10.1103/PhysRevLett.122.114501CrossRefGoogle ScholarPubMed
Linde, H., Pfaff, S. & Zirkel, C. 1964 Flow investigations into the hydrodynamic instability of liquid-gaseous phase boundaries using the capillary gap method. J. Phys. Chem. 225 (1), 72100.Google Scholar
Loewenthal, M. 1931 XL. Tears of strong wine. London Edinburgh Dublin Phil. Mag. J. Sci. 12, 462472.10.1080/14786443109461822CrossRefGoogle Scholar
Lohse, D. 2022 Fundamental fluid dynamics challenges in inkjet printing. Annu. Rev. Fluid Mech. 54 (1), 349382.10.1146/annurev-fluid-022321-114001CrossRefGoogle Scholar
Lohse, D. & Zhang, X. 2020 Physicochemical hydrodynamics of droplets out of equilibrium. Nat. Rev. Phys. 2 (8), 426443.10.1038/s42254-020-0199-zCrossRefGoogle Scholar
Lopez de la Cruz, R.A., Diddens, C., Zhang, X. & Lohse, D. 2021 Marangoni instability triggered by selective evaporation of a binary liquid inside a Hele-Shaw cell. J. Fluid Mech. 923, A16.10.1017/jfm.2021.555CrossRefGoogle Scholar
Machrafi, H., Rednikov, A., Colinet, P. & Dauby, P.C. 2010 Bénard instabilities in a binary-liquid layer evaporating into an inert gas. J. Colloid Interface Sci. 349 (1), 331353.10.1016/j.jcis.2010.04.043CrossRefGoogle Scholar
Nazareth, R.K., Karapetsas, G., Sefiane, K., Matar, O.K. & Valluri, P. 2020 Stability of slowly evaporating thin liquid films of binary mixtures. Phys. Rev. Fluids 5 (10), 104007.10.1103/PhysRevFluids.5.104007CrossRefGoogle Scholar
Pahlavan, A.A., Yang, L., Bain, C.D. & Stone, H.A. 2021 Evaporation of binary-mixture liquid droplets: the formation of picoliter pancakelike shapes. Phys. Rev. Lett. 127 (2), 024501.10.1103/PhysRevLett.127.024501CrossRefGoogle ScholarPubMed
Pearson, J.R.A. 1958 On convection cells induced by surface tension. J. Fluid Mech. 4 (5), 489500.10.1017/S0022112058000616CrossRefGoogle Scholar
Popov, Y.O. 2005 Evaporative deposition patterns: spatial dimensions of the deposit. Phys. Rev. E 71 (3), 036313.10.1103/PhysRevE.71.036313CrossRefGoogle ScholarPubMed
Rowan, S.M., Newton, M.I., Driewer, F.W. & McHale, G. 2000 Evaporation of microdroplets of azeotropic liquids. J. Phys. Chem. B 104 (34), 82178220.10.1021/jp000938eCrossRefGoogle Scholar
Sefiane, K., David, S. & Shanahan, M.E.R. 2008 Wetting and evaporation of binary mixture drops. J. Phys. Chem. B 112 (36), 1131711323.10.1021/jp8030418CrossRefGoogle ScholarPubMed
Shin, S., Jacobi, I. & Stone, H.A. 2016 Bénard-Marangoni instability driven by moisture absorption. Europhys. Lett. 113 (2), 24002.10.1209/0295-5075/113/24002CrossRefGoogle Scholar
Sternling, C.V. & Scriven, L.E. 1959 Interfacial turbulence: hydrodynamic instability and the Marangoni effect. AIChE J. 5 (4), 514523.10.1002/aic.690050421CrossRefGoogle Scholar
Strogatz, S.H. 2018 Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering. CRC press.10.1201/9780429492563CrossRefGoogle Scholar
Tan, H., Diddens, C., Lv, P., Kuerten, J.G.M., Zhang, X. & Lohse, D. 2016 Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop. Proc. Natl Acad. Sci. 113 (31), 86428647.10.1073/pnas.1602260113CrossRefGoogle ScholarPubMed
Thomson, J. 1855 XLII. On certain curious motions observable at the surfaces of wine and other alcoholic liquors. Lond. Edinburgh Dublin Phil. Mag. J. Sci. 10, 330333.10.1080/14786445508641982CrossRefGoogle Scholar
Wang, Z., Orejon, D., Takata, Y. & Sefiane, K. 2022 Wetting and evaporation of multicomponent droplets. Phys. Rep. 960, 137.10.1016/j.physrep.2022.02.005CrossRefGoogle Scholar
Wiesel, W.E. 1993 Continuous time algorithm for Lyapunov exponents. I. Phys. Rev. E 47 (5), 3686.10.1103/PhysRevE.47.3686CrossRefGoogle ScholarPubMed
Yang, L., Pahlavan, A.A., Stone, H.A. & Bain, C.D. 2023 Evaporation of alcohol droplets on surfaces in moist air. Proc. Natl Acad. Sci. 120 (38), e2302653120.10.1073/pnas.2302653120CrossRefGoogle ScholarPubMed
Supplementary material: File

Rocha et al. supplementary movie 1

Numerical solution of ethanol liquid and vapour mass fraction in transient (left) and quasi-stationary (right) simulations under the same conditions.
Download Rocha et al. supplementary movie 1(File)
File 1.7 MB
Supplementary material: File

Rocha et al. supplementary movie 2

Numerical solution of ethanol vapour mass fraction and liquid’s velocity magnitude in transient (left) and quasi-stationary (right) simulations under the same conditions.
Download Rocha et al. supplementary movie 2(File)
File 1.3 MB
Supplementary material: File

Rocha et al. supplementary movie 3

Numerical solution of water vapour mass fraction and temperature field in both phase in transient simulations.
Download Rocha et al. supplementary movie 3(File)
File 1.3 MB
Supplementary material: File

Rocha et al. supplementary movie 4

Lyaponov exponents in evaporating negative Marangoni flat droplet, with a Marangoni number Ma=-10000. Here, a transient lubrication model is used for the calculation, where the average mass fraction of each component in the droplet is kept fixed over time.
Download Rocha et al. supplementary movie 4(File)
File 786.6 KB