Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-ndjvl Total loading time: 0.193 Render date: 2022-05-23T12:45:36.223Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

A mechanism for instability of plane Couette flow and of Poiseuille flow in a pipe

Published online by Cambridge University Press:  28 March 2006

A. E. Gill
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge

Abstract

It is found that only a small change in either of the undisturbed velocity profiles concerned is required to change them from stable profiles to unstable profiles. The change must be such as to produce a local maximum in the magnitude of the vorticity, or in the case of the pipe, in the magnitude of the vorticity divided by the radius. The actual change in the vorticity (or vorticity/radius) need only be small, but the gradient of the vorticity (or vorticity/radius) must be finite. Viscosity will tend to damp out the distortion in the mean flow that is responsible for the instability, so that if the flow is to become turbulent, non-linear effects must become important before the distortion of the mean flow is reduced to an ineffective level. This requirement leads to the determination of critical Reynolds numbers which depend on the initial (small) distortion of the mean flow and the initial (smaller) amplitude of periodic disturbances. These critical Reynolds numbers are large.

Type
Research Article
Copyright
© 1965 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. & Gill, A. E. 1962 J. Fluid Mech. 14, 529.
Drazin, P. G. & Howard, L. N. 1962 J. Fluid Mech. 14, 257.
Gaster, M. 1962 J. Fluid Mech. 14, 222.
Gill, A. E. 1965 J. Fluid Mech. 21, 145.
Goldstein, S. 1938 Modern Developments in Fluid Mechanics. Oxford: Clarendon Press.
Kuethe, A. M. 1956 J. Aero. Sci. 23, 446.
Leite, R. J. 1956 Univ. Michigan Engng Coll. Rep. IP-188.
Lin, C. C. 1955 The Theory of Hydrodynamic Stability. Cambridge University Press.
Meksyn, D. & Stuart, J. T. 1951 Proc. Roy. Soc. A, 208, 517.
Rosenbluth, M. N. & Simon, A. 1964 Phys. Fluids, 7, 557.
Rosenhead, L. 1963 Laminar Boundary Layers. Oxford: Clarendon Press.
Tatsumi, T. 1952 J. Phys. Soc. Japan, 7, 489.
Watson, J. 1960 J. Fluid Mech. 9, 371.
36
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A mechanism for instability of plane Couette flow and of Poiseuille flow in a pipe
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

A mechanism for instability of plane Couette flow and of Poiseuille flow in a pipe
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

A mechanism for instability of plane Couette flow and of Poiseuille flow in a pipe
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *