Hostname: page-component-6b989bf9dc-6f5p8 Total loading time: 0.001 Render date: 2024-04-14T00:22:11.580Z Has data issue: false hasContentIssue false

A mechanism of formation of multiple zonal jets in the oceans

Published online by Cambridge University Press:  01 June 2009

P. BERLOFF*
Affiliation:
Physical Oceanography Department, Woods Hole Oceanographic Institution, MA 02543 508/289-2462, USA Grantham Institute for Climate Change and Department of Mathematics, Imperial College, London SW7 2AZ, UK
I. KAMENKOVICH
Affiliation:
RSMAS, University of Miami, Coral Gables, FL 33146, USA
J. PEDLOSKY
Affiliation:
Physical Oceanography Department, Woods Hole Oceanographic Institution, MA 02543 508/289-2462, USA
*
Email address for correspondence: pberlo.@whoi.edu

Abstract

Multiple alternating zonal jets observed in the ocean are studied with an idealized quasigeostrophic model of flow in a zonal channel. The jets are maintained by the eddies generated by the imposed, supercritical background flow. The formation, nonlinear dynamics and equilibration of the jets are explained in terms of linear stability arguments and nonlinear self-interactions of the linear eigenmodes. In the proposed mechanism, energy of the background flow is released to the primary instability mode with long meridional and short zonal length scales. This mode undergoes secondary, transverse instability that sets the meridional scale of the emerging multiple zonal jets. This instability channels energy into several weakly damped zonal eigenmodes that amplify the jets. The emerging jets feed back on the instabilities through the partial meridional localization of the most unstable eigenmodes.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baldwin, M., Rhines, P., Huang, H.-P. & McIntyre, M. 2007 The jet-stream conundrum. Science 315, 467468.CrossRefGoogle ScholarPubMed
Balk, A., Nazarenko, S. & Zakharov, V. 1990 On the nonlocal turbulence of drift type waves. Phys. Rev. Lett. A 146, 217221.CrossRefGoogle Scholar
Berloff, P. 2005 On rectification of randomly forced flows. J. Mar. Res. 63, 497527.Google Scholar
Berloff, P., Kamenkovich, I. & Pedlosky, J. 2009 A model of multiple zonal jets in the oceans: dynamical and kinematical analysis. J. Phys. Oceanogr, submitted.Google Scholar
Bonfigli, G. & Kloker, M. 2005 Secondary instability of crossflow vortices: validation of the stability theory by direct numerical simulation. J. Fluid Mech. 583, 229272.CrossRefGoogle Scholar
Chekhlov, A., Orszag, S., Sukoriansky, S., Galperin, B. & Staroselsky, I. 1996 The effect of small-scale forcing on large-scale structures in two-dimensional flows. Physica D 98, 321334.CrossRefGoogle Scholar
Danilov, S. & Gryanik, V. 2004 Barotropic beta-plane turbulence in a regime with strong zonal jets revisited. J. Atmos. Sci. 61, 22832295.2.0.CO;2>CrossRefGoogle Scholar
Danilov, S. & Gurarie, D. 2004 Scaling, spectra and zonal jets in beta-plane turbulence. Phys. Fluids 16, 25922603.Google Scholar
Dritschel, D. & McIntyre, M. 2008 Multiple jets as PV staircases: the Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci. 65, 855874.Google Scholar
Farrell, B. & Ioannou, P. 2007 Structure and spacing of jets in barotropic turbulence. J. Atmos. Sci. 64, 36523665.Google Scholar
Farrell, B. & Ioannou, P. 2008 Formation of jets by baroclinic turbulence. J. Atmos. Sci. 65, 33533375.CrossRefGoogle Scholar
Galperin, B., Nakano, H., Huang, H. & Sukoriansky, S. 2004 The ubiquitous zonal jets in the atmospheres of giant planets and Earth's oceans. Geophys. Res. Lett. 31, L13303.Google Scholar
Haidvogel, D. & Held, I. 1980 Homogeneous quasi-geostrophic turbulence driven by a uniform temperature gradient. J. Atmos. Sci. 37, 26442660.Google Scholar
Herbei, R., McKeague, I. & Speer, K. 2008 Gyres and jets: inversion of tracer data for ocean circulation structure. J. Phys. Oceanogr. 38, 11801202.Google Scholar
Hogg, N. & Owens, B. 1999 Direct measurement of the deep circulation within the Brazil basin. Deep-Sea Res. 46, 335353.Google Scholar
Hristova, H., Pedlosky, J. & Spall, M. 2008 Radiating instability of a meridional boundary current. J. Phys. Oceanogr. 38, 22942307.Google Scholar
Huang, H.-P., Kaplan, A., Curchitser, E. & Maximenko, N. 2007 The degree of anisotropy for mid-ocean currents from satellite observations and an eddy-permitting model simulation. J. Geophys. Res. 112, C09005.CrossRefGoogle Scholar
Huang, H.-P. & Robinson, W. 1998 Two-dimensional turbulence and persistent zonal jets in a global barotropic model. J. Atmos. Sci. 55, 611632.Google Scholar
Ivanov, L., Collins, C. & Margolina, T. 2008 System of quasi-zonal jets off California revealed from satellite altimetry. Geophys. Res. Lett. 36, L03609.Google Scholar
Kamenkovich, I., Berloff, P. & Pedlosky, J. 2009 Role of eddy forcing in the dynamics of zonal jets in the North Atlantic. J. Phys. Oceanogr. in press.Google Scholar
Kamenkovich, I. & Pedlosky, J. 1996 Radiating instability of nonzonal ocean currents. J. Phys. Oceanogr. 26, 622643.Google Scholar
Kaspi, I. & Flierl, G. 2007 Formation of jets by baroclinic instability on gas planet atmospheres. J. Atmos. Sci. 64, 31773194.CrossRefGoogle Scholar
Kramer, W., van Buren, M., Clercx, H. & van Heijst, G. 2006 Beta-plane turbulence in a basin with no-slip boundaries. Phys. Fluids 18, 026603.CrossRefGoogle Scholar
Lee, S. 1997 Maintenance of multiple jets in a baroclinic flow. J. Atmos. Sci. 54, 17261738.2.0.CO;2>CrossRefGoogle Scholar
Manfroi, A. & Young, W. 1999 Slow evolution of zonal jets on the beta plane. J. Atmos. Sci. 56, 784800.Google Scholar
Manfroi, A. & Young, W. 2002 Stability of β-plane Kolmogorov flow. Physica D 162, 208232.Google Scholar
Maximenko, N., Bang, B. & Sasaki, H. 2005 Observational evidence of alternating zonal jets in the world ocean. Geophys. Res. Lett. 32, L12607.Google Scholar
Maximenko, N., Melnichenko, O., Niiler, P. & Sasaki, H. 2008 Stationary mesoscale jet-like features in the ocean. Geophys. Res. Lett. 35, L08603.CrossRefGoogle Scholar
McIntyre, M. 1982 How well do we understand the dynamics of stratospheric warmings? J. Meteorol. Soc. Jpn 60, 3765.CrossRefGoogle Scholar
McWilliams, J. 1977 A note on a consistent quasigeostrophic model in a multiply connected domain. Dyn. Atmos. Oceans 1, 427441.CrossRefGoogle Scholar
McWilliams, J. 2006 Fundamentals of Geophysical Fluid Dynamics. Cambridge University Press p. 249.Google Scholar
Nadiga, B. 2006 On zonal jets in oceans. Geophys. Res. Lett. 33, L10601.CrossRefGoogle Scholar
Nakano, H. & Hasumi, H. 2005 A series of zonal jets embedded in the broad zonal flows in the Pacific obtained in eddy-permitting ocean general circulation models. J. Phys. Oceanogr. 35, 474488.Google Scholar
Ollitrault, M., Lankhorst, M., Fratantoni, D. & Richardson, P. 2006 Zonal intermediate currents in the equatorial Atlantic Ocean. Geophys. Res. Lett. 33, L05605.Google Scholar
Orszag, S. & Patera, A. 1983 Secondary instability of wall-bounded shear flows. J. Fluid Mech. 128, 347385.CrossRefGoogle Scholar
Panetta, L. 1993 Zonal jets in wide baroclinically unstable regions: persistence and scale selection. J. Atmos. Sci. 50, 20732106.Google Scholar
Pedlosky, J. 1975 a The amplitude of baroclinic wave triads and mesoscale motion in the ocean. J. Phys. Oceanogr. 5, 608614.Google Scholar
Pedlosky, J. 1975 b On secondary baroclinic instability and the meridional scale of motion in the ocean. J. Phys. Oceanogr. 5, 603607.Google Scholar
Pedlosky, J. 1987 Geophysical Fluid Dynamics, 2nd edn. Springer p. 710.Google Scholar
Phillips, N. 1956 The general circulation of the atmosphere: a numerical experiment. Quart. J. R. Meteorol. Soc. 82, 123164.Google Scholar
Qiu, B., Scott, R. & Chen, S. 2008 Length scales of eddy generation and nonlinear evolution of the seasonally-modulated South Pacific subtropical countercurrent. J. Phys. Oceanogr. 38, 15151528.CrossRefGoogle Scholar
Rhines, P. 1975 Waves and turbulence on a beta-plane. J. Fluid Mech. 69, 417443.Google Scholar
Richards, K., Maximenko, N., Bryan, F. & Sasaki, H. 2006 Zonal jets in the Pacific ocean. Geophys. Res. Lett. 33, L03605.Google Scholar
Schlax, M. & Chelton, D. 2008 The influence of mesoscale eddies on the detection of quasi-zonal jets in the ocean. Geophys. Res. Lett. 35, L24602.Google Scholar
Sen, A., Arbic, B., Scott, R., Holland, C., Logan, E. & Qiu, B. 2006 Persistent small-scale features in maps of the anisotropy of ocean surface velocities: implications for mixing? Eos. Trans. AGU 87 (52).Google Scholar
Shepherd, T. 1988 Nonlinear saturation of baroclinic instability. Part 1. The two-layer model. J. Atmos. Sci. 45, 20142025.Google Scholar
Sinha, B. & Richards, K. 1999 Jet structure and scaling in Southern Ocean models. J. Phys. Oceanogr. 29, 11431155.Google Scholar
Smith, K. 2004 A local model for planetary atmospheres forced by small-scale convection. J. Atmos. Sci. 61, 14201433.2.0.CO;2>CrossRefGoogle Scholar
Sokolov, S. & Rintoul, S. 2007 Multiple jets of the Antarctic Circumpolar Current south of Australia. J. Phys. Oceanogr. 37, 13941412.Google Scholar
Spall, M. 2000 Generation of strong mesoscale eddies by weak ocean gyres. J. Mar. Res. 58, 97116.Google Scholar
Starr, V. 1968 Physics of Negative Viscosity Phenomena. McGraw-Hill p. 256.Google Scholar
Stern, M. & Simeonov, J. 2005 The secondary instability of salt fingers. J. Fluid Mech. 533, 361380.Google Scholar
Sukoriansky, S., Dikovskaya, N. & Galperin, B. 2007 On the ‘arrest’ of inverse energy cascade and the Rhines scale. J. Atmos. Sci. 64, 33123327.Google Scholar
Theiss, J. 2004 Equatorward energy cascade, critical latitude, and the predominance of cyclonic vortices in geostrophic turbulence. J. Phys. Oceanogr. 34, 16631678.Google Scholar
Thompson, A. & Young, W. 2007 Baroclinic eddy heat fluxes: zonal flows and energy balance. J. Atmos. Sci. 64, 32143231.Google Scholar
Treguier, A. & Panetta, L. 1994 Multiple zonal jets in a quasigeostrophic model of the Antarctic Circumpolar Current. J. Phys. Oceanogr. 24, 22632277.2.0.CO;2>CrossRefGoogle Scholar
Vallis, G. & Maltrud, M. 1993 Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr. 23, 13461362.Google Scholar
Williams, G. 1978 Planetary circulations Part 1. Barotropic representation of jovian and terrestrial turbulence. J. Atmos. Sci. 35, 13991426.2.0.CO;2>CrossRefGoogle Scholar