Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-ssw5r Total loading time: 0.212 Render date: 2022-08-13T06:20:45.929Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Melting and dissolving of a vertical solid surface with laminar compositional convection

Published online by Cambridge University Press:  06 October 2011

Andrew J. Wells*
Affiliation:
Institute of Theoretical Geophysics, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
M. Grae Worster
Affiliation:
Institute of Theoretical Geophysics, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
*
Email address for correspondence: Andrew.J.Wells@yale.edu

Abstract

We consider laminar compositional convection of buoyant melt released by ablation of a vertical solid surface into a two-component fluid. Asymptotic solutions are used to describe separate cases: the ablation rate is either controlled by thermal transport, corresponding to melting, or by solutal transport, corresponding to dissolution. Melting is faster and generates a stronger flow than dissolving. We determine the temperature and solute concentration conditions leading to either melting or dissolving and find that these conditions do not vary with the strength of the buoyancy that drives convective flow.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Department of Geology and Geophysics, Yale University, New Haven, CT 06520, USA.

References

1. Acton, F. S. 1990 Numerical Methods that Work. MAA.Google Scholar
2. Carey, V. P. & Gebhart, B. 1982a Transport near a vertical ice surface melting in saline water: some numerical calculations. J. Fluid Mech. 117, 379402.CrossRefGoogle Scholar
3. Carey, V. P. & Gebhart, B. 1982b Transport near a vertical ice surface melting in saline water: experiments at low salinities. J. Fluid Mech. 117, 403423.CrossRefGoogle Scholar
4. Gebhart, B., Jaluria, Y., Mahajan, R. L. & Sammakia, B. 1988 Buoyancy Induced Flows and Transport, pp. 547655 Hemisphere, ch. 11.Google Scholar
5. Josberger, E. G. & Martin, S. 1981 A laboratory and theoretical study of the boundary layer adjacent to a vertical melting ice wall in salt water. J. Fluid Mech. 111, 439473.CrossRefGoogle Scholar
6. Kerr, R. C. 1994a Melting driven by vigorous compositional convection. J. Fluid Mech. 280, 255285.CrossRefGoogle Scholar
7. Kerr, R. C. 1994b Dissolving driven by vigorous compositional convection. J. Fluid Mech. 280, 287302.CrossRefGoogle Scholar
8. Kuiken, H. K. 1968 An asymptotic solution for large Prandtl number free convection. J. Engng Maths 2 (4), 355371.CrossRefGoogle Scholar
9. Morgan, V. I. & Budd, W. F. 1978 The distribution, movement and melt rates of Antarctic icebergs. In Iceberg Utilization: Proceedings of the First International Conference. (ed. Husseiny, A. ). pp. 220228. Pergamon Press.CrossRefGoogle Scholar
10. Nilson, R. H. 1985 Countercurrent convection in a double diffusive boundary layer. J. Fluid Mech. 160, 181210.CrossRefGoogle Scholar
11. Notz, D., McPhee, M. G., Worster, M. G., Maykut, G. A., Schlünzen, K. H. & Eicken, H. 2003 Impact of underwater–ice evolution on Arctic summer sea ice. J. Geophys. Res. 108, 16–1–16–12.CrossRefGoogle Scholar
12. Perovich, D. K., Richter-Menge, J. A., Jones, K. F. & Light, B. 2008 Sunlight, water and ice: extreme arctic sea ice melt during the summer of 2007. Geophys. Res. Lett. 35, doi:10.1029/2008GL034007.CrossRefGoogle Scholar
13. Woods, A. W. 1992 Melting and dissolving. J. Fluid Mech. 239, 429448.CrossRefGoogle Scholar
15
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Melting and dissolving of a vertical solid surface with laminar compositional convection
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Melting and dissolving of a vertical solid surface with laminar compositional convection
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Melting and dissolving of a vertical solid surface with laminar compositional convection
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *