Skip to main content Accessibility help
×
Home
Hostname: page-component-5959bf8d4d-89n48 Total loading time: 0.311 Render date: 2022-12-07T18:17:27.900Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Minimal models for precipitating turbulent convection

Published online by Cambridge University Press:  01 February 2013

Gerardo Hernandez-Duenas
Affiliation:
Department of Mathematics, University of Wisconsin–Madison, Madison, WI 53706, USA
Andrew J. Majda
Affiliation:
Department of Mathematics and Center for Atmosphere and Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, NY 10012-1110, USA
Leslie M. Smith
Affiliation:
Department of Mathematics, University of Wisconsin–Madison, Madison, WI 53706, USA Department of Engineering Physics, University of Wisconsin–Madison, Madison, WI 53706, USA
Samuel N. Stechmann*
Affiliation:
Department of Mathematics, University of Wisconsin–Madison, Madison, WI 53706, USA Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, WI 53706, USA
*
Email address for correspondence: stechmann@wisc.edu

Abstract

Simulations of precipitating convection would typically use a non-Boussinesq dynamical core such as the anelastic equations, and would incorporate water substance in all of its phases: vapour, liquid and ice. Furthermore, the liquid water phase would be separated into cloud water (small droplets suspended in air) and rain water (larger droplets that fall). Depending on environmental conditions, the moist convection may organize itself on multiple length and time scales. Here we investigate the question, what is the minimal representation of water substance and dynamics that still reproduces the basic regimes of turbulent convective organization? The simplified models investigated here use a Boussinesq atmosphere with bulk cloud physics involving equations for water vapour and rain water only. As a first test of the minimal models, we investigate organization or lack thereof on relatively small length scales of approximately 100 km and time scales of a few days. It is demonstrated that the minimal models produce either unorganized (‘scattered’) or organized convection in appropriate environmental conditions, depending on the environmental wind shear. For the case of organized convection, the models qualitatively capture features of propagating squall lines that are observed in nature and in more comprehensive cloud resolving models, such as tilted rain water profiles, low-altitude cold pools and propagation speed corresponding to the maximum of the horizontally averaged, horizontal velocity.

Type
Papers
Copyright
©2013 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asai, T. 1970 Stability of a plane parallel flow with variable vertical shear and unstable stratification. J. Met. Soc. Japan 48, 129139.CrossRefGoogle Scholar
Bannon, P. R. 1996 On the anelastic approximation for a compressible atmosphere. J. Atmos. Sci. 53, 36183628.2.0.CO;2>CrossRefGoogle Scholar
Barnes, G. M. & Sieckman, K. 1984 The environment of fast-and slow-moving tropical mesoscale convective cloud lines. Mon. Weath. Rev. 112 (9), 17821794.2.0.CO;2>CrossRefGoogle Scholar
Bretherton, C. S. 1987 A theory for nonprecipitating moist convection between two parallel plates. Part I: thermodynamics and ‘linear’ solutions. J. Atmos. Sci. 44, 18091827.2.0.CO;2>CrossRefGoogle Scholar
Castaing, B., Gunaratne, G., Kadanoff, L., Libchaber, A. & Heslot, F. 1989 Scaling of hard thermal turbulence in Rayleigh–Bénard convection. J. Fluid Mech. 204 (1), 130.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.Google Scholar
Cuijpers, J. W. M. & Duynkerke, P. G. 1993 Large eddy simulation of trade wind cumulus clouds. J. Atmos. Sci. 50 (23), 38943908.2.0.CO;2>CrossRefGoogle Scholar
Deardorff, J. W. 1965 Gravitational instability between horizontal plates with shear. Phys. Fluids 8, 1027.CrossRefGoogle Scholar
Deng, Q., Smith, L. M. & Majda, A. J. 2012 Tropical cyclogenesis and vertical shear in a moist Boussinesq model. J. Fluid Mech. 706, 384412.CrossRefGoogle Scholar
Emanuel, K. 1986 Some dynamical aspect of precipitating convection. J. Atmos. Sci. 43, 21832198.2.0.CO;2>CrossRefGoogle Scholar
Emanuel, K. A. 1994 Atmospheric Convection. Oxford University Press.Google Scholar
Fovell, R. & Ogura, Y. 1988 Numerical simulation of a midlatitude squall line in two dimensions. J. Atmos. Sci. 45 (24), 38463879.2.0.CO;2>CrossRefGoogle Scholar
Grabowski, W. W. & Clark, T. L. 1993 Cloud–environment interface instability, part II: extension to three spatial dimensions. J. Atmos. Sci. 50, 555573.2.0.CO;2>CrossRefGoogle Scholar
Grabowski, W. W. & Moncrieff, M. W. 2001 Large-scale organization of tropical convection in two-dimensional explicit numerical simulations. Q. J. R. Meteorol. Soc. 127, 445468.CrossRefGoogle Scholar
Grabowski, W. W. & Smolarkiewicz, P. K. 1996 Two-time-level semi-Lagrangian modeling of precipitating clouds. Mon. Weath. Rev. 124 (3), 487497.2.0.CO;2>CrossRefGoogle Scholar
Grabowski, W. W., Wu, X. & Moncrieff, M. W. 1996 Cloud-resolving modeling of tropical cloud systems during Phase III of GATE. Part I: two-dimensional experiments. J. Atmos. Sci. 53, 36843709.2.0.CO;2>CrossRefGoogle Scholar
Grabowski, W. W., Wu, X., Moncrieff, M. W. & Hall, W. D. 1998 Cloud-resolving modeling of cloud systems during Phase III of GATE. Part II: effects of resolution and the third spatial dimension. J. Atmos. Sci. 55 (21), 32643282.2.0.CO;2>CrossRefGoogle Scholar
Hendon, H. H. & Liebmann, B. 1994 Organization of convection within the Madden–Julian oscillation. J. Geophys. Res. 99, 80738084.CrossRefGoogle Scholar
Houze, R. A. 1993 Cloud Dynamics. Academic.Google Scholar
Houze, R. A. Jr. 2004 Mesoscale convective systems. Rev. Geophys. 42, G4003+.CrossRefGoogle Scholar
Jorgensen, D. P., LeMone, M. A. & Trier, S. B. 1997 Structure and evolution of the 22 February 1993 TOGA COARE squall line: aircraft observations of precipitation, circulation, and surface energy fluxes. J. Atmos. Sci. 54 (15), 19611985.2.0.CO;2>CrossRefGoogle Scholar
Jung, J.-H. & Arakawa, A. 2005 Preliminary tests of multiscale modeling with a two-dimensional framework: sensitivity to coupling methods. Mon. Weath. Rev. 133 (3), 649662.CrossRefGoogle Scholar
Kessler, E. 1969 On the Distribution and Continuity of Water Substance in Atmospheric Circulations, Meteorological Monographs , vol. 32. American Meteorological Society.CrossRefGoogle Scholar
Khouider, B., Han, Y., Majda, A. J. & Stechmann, S. N. 2012 Multiscale waves in an MJO background and convective momentum transport feedback. J. Atmos. Sci. 69, 915933.CrossRefGoogle Scholar
Kiladis, G. N., Wheeler, M. C., Haertel, P. T., Straub, K. H. & Roundy, P. E. 2009 Convectively coupled equatorial waves. Rev. Geophys. 47, RG2003.CrossRefGoogle Scholar
Kim, D., Sperber, K., Stern, W., Waliser, D., Kang, I.-S., Maloney, E., Wang, W., Weickmann, K., Benedict, J., Khairoutdinov, M., Lee, M.-I., Neale, R., Suarez, M., Thayer-Calder, K. & Zhang, G. 2009 Application of MJO simulation diagnostics to climate models. J. Climate 22 (23), 64136436.CrossRefGoogle Scholar
Klein, R. & Majda, A. 2006 Systematic multiscale models for deep convection on mesoscales. Theor. Comput. Fluid Dyn. 20, 525551.CrossRefGoogle Scholar
Krishnamurti, R. 1970a On the transition to turbulent convection. Part 1. The transition from two-to three-dimensional flow. J. Fluid Mech. 42 (2), 295307.CrossRefGoogle Scholar
Krishnamurti, R. 1970b On the transition to turbulent convection. Part 2. The transition to time-dependent flow. J. Fluid Mech. 42 (2), 309320.CrossRefGoogle Scholar
Kuo, H. L. 1961 Convection in conditionally unstable atmosphere. Tellus 13 (4), 441459.CrossRefGoogle Scholar
Lafore, J. P. & Moncrieff, M. W. 1989 A numerical investigation of the organization and interaction of the convective and stratiform regions of tropical squall lines. J. Atmos. Sci. 46 (4), 521544.Google Scholar
Lau, W. K. M. & Waliser, D. E. (Eds) 2011 Intraseasonal Variability in the Atmosphere–Ocean Climate System. Springer.Google Scholar
LeMone, M. A., Zipser, E. J. & Trier, S. B. 1998 The role of environmental shear and thermodynamic conditions in determining the structure and evolution of mesoscale convective systems during TOGA COARE. J. Atmos. Sci. 55 (23), 34933518.2.0.CO;2>CrossRefGoogle Scholar
Lilly, D. K. 1979 The dynamical structure and evolution of thunderstorms and squall lines. Annu. Rev. Earth Planet. Sci. 7, 117161.CrossRefGoogle Scholar
Lipps, F. B. & Hemler, R. S. 1982 A scale analysis of deep moist convection and some related numerical calculations. J. Atmos. Sci. 39, 21922210.2.0.CO;2>CrossRefGoogle Scholar
Liu, C. & Moncrieff, M. W. 2001 Cumulus ensembles in shear: implications for parameterization. J. Atmos. Sci. 58 (18), 28322842.2.0.CO;2>CrossRefGoogle Scholar
Lucas, C., Zipser, E. J. & Ferrier, B. S. 2000 Sensitivity of tropical west pacific oceanic squall lines to tropospheric wind and moisture profiles. J. Atmos. Sci. 57 (15), 23512373.2.0.CO;2>CrossRefGoogle Scholar
Majda, A. & Souganidis, P. 2000 The effect of turbulence on mixing in prototype reaction–diffusion systems. Commun. Pure Appl. Maths 53 (10), 12841304.3.0.CO;2-0>CrossRefGoogle Scholar
Majda, A. J. & Stechmann, S. N. 2008 Stochastic models for convective momentum transport. Proc. Natl Acad. Sci. U.S.A. 105, 1761417619.CrossRefGoogle ScholarPubMed
Majda, A. J. & Stechmann, S. N. 2009 A simple dynamical model with features of convective momentum transport. J. Atmos. Sci. 66, 373392.CrossRefGoogle Scholar
Majda, A. J. & Stechmann, S. N. 2011 Multiscale theories for the MJO. In Intraseasonal Variability in the Atmosphere–Ocean Climate System (ed. Lau, W. K. M. & Waliser, D. E.). Springer.Google Scholar
Majda, A. J. & Xing, Y. 2010 New multi-scale models on mesoscales and squall lines. Commun. Math. Sci. 8 (1), 113144.CrossRefGoogle Scholar
Majda, A. J., Xing, Y. & Mohammadian, M. 2010 Moist multi-scale models for the hurricane embryo. J. Fluid Mech. 657, 478501.CrossRefGoogle Scholar
Mapes, B. E., Tulich, S., Lin, J.-L. & Zuidema, P. 2006 The mesoscale convection life cycle: building block or prototype for large-scale tropical waves?. Dyn. Atmos. Oceans 42, 329.CrossRefGoogle Scholar
Moncrieff, M. W. 1981 A theory of organized steady convection and its transport properties. Q. J. R. Meteorol. Soc. 107 (451), 2950.CrossRefGoogle Scholar
Moncrieff, M. W. 1992 Organized convective systems: archetypal dynamical models, mass and momentum flux theory, and parameterization. Q. J. R. Meteorol. Soc. 118 (507), 819850.CrossRefGoogle Scholar
Moncrieff, M. W. 2010 The multiscale organization of moist convection and the intersection of weather and climate. In Climate Dynamics: Why Does Climate Vary? (ed. Sun, D.-Z. & Bryan, F.). Geophysical Monograph Series , vol. 189. pp. 326. American Geophysical Union.CrossRefGoogle Scholar
Moncrieff, M. W. & Green, J. S. A. 1972 The propagation and transfer properties of steady convective overturning in shear. Q. J. R. Meteorol. Soc. 98 (416), 336352.CrossRefGoogle Scholar
Moncrieff, M. W. & Miller, M. J. 1976 The dynamics and simulation of tropical cumulonimbus and squall lines. Q. J. R. Meteorol. Soc. 102, 373394.CrossRefGoogle Scholar
Moncrieff, M. W., Shapiro, M., Slingo, J. & Molteni, F. 2007 Collaborative research at the intersection of weather and climate. WMO Bull. 56, 204211.Google Scholar
Morrison, H. & Grabowski, W. W. 2008 Modeling supersaturation and subgrid-scale mixing with two-moment bulk warm microphysics. J. Atmos. Sci. 65 (3), 792812.CrossRefGoogle Scholar
Nakazawa, T. 1988 Tropical super clusters within intraseasonal variations over the Western Pacific. J. Met. Soc. Japan 66 (6), 823839.CrossRefGoogle Scholar
Ogura, Y. & Phillips, N. A. 1962 Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci. 19, 173179.2.0.CO;2>CrossRefGoogle Scholar
Pauluis, O. 2008 Thermodynamic consistency of the anelastic approximation for a moist atmosphere. J. Atmos. Sci. 65 (8), 27192729.CrossRefGoogle Scholar
Pauluis, O., Balaji, V. & Held, I. M. 2000 Frictional dissipation in a precipitating atmosphere. J. Atmos. Sci. 57 (7), 989994.2.0.CO;2>CrossRefGoogle Scholar
Pauluis, O. & Dias, J. 2012 Satellite estimates of precipitation-induced dissipation in the atmosphere. Science 335 (6071), 953956.CrossRefGoogle ScholarPubMed
Pauluis, O. & Schumacher, J. 2010 Idealized moist Rayleigh–Bénard convection with piecewise linear equation of state. Commun. Math. Sci. 8, 295319.CrossRefGoogle Scholar
Pauluis, O. & Schumacher, J. 2011 Self-aggregation of clouds in conditionally unstable moist convection. Proc. Natl Acad. Sci. U.S.A. 108, 1262312628.CrossRefGoogle ScholarPubMed
Peters, N. 2000 Turbulent Combustion. Cambridge University Press.CrossRefGoogle Scholar
Pruppacher, H. R. & Klett, J. D. 1997 Microphysics of Clouds and Precipitation. Kluwer Academic.Google Scholar
Rogers, R. R. & Yau, M. K. 1989 A Short Course in Cloud Physics. Butterworth–Heinemann.Google Scholar
Schumacher, J. & Pauluis, O. 2010 Buoyancy statistics in moist turbulent Rayleigh–Bénard convection. J. Fluid Mech. 648, 509519.CrossRefGoogle Scholar
Seitter, K. L. & Kuo, H.-L. 1983 The dynamical structure of squall-line type thunderstorms. J. Atmos. Sci. 40, 28312854.2.0.CO;2>CrossRefGoogle Scholar
Spiegel, E. A. & Veronis, G. 1960 On the Boussinesq approximation for a compressible fluid. Astrophys. J. 131, 442447.CrossRefGoogle Scholar
Spyksma, K. & Bartello, P. 2008 Small-scale moist turbulence in numerically generated convective clouds. J. Atmos. Sci. 65, 19671978.CrossRefGoogle Scholar
Spyksma, K., Bartello, P. & Yau, M. K. 2006 A Boussinesq moist turbulence model. J. Turbul. 7, 124.CrossRefGoogle Scholar
Stevens, B. 2005 Atmospheric moist convection. Annu. Rev. Earth Planet. Sci. 33 (1), 605643.CrossRefGoogle Scholar
Stevens, B. 2007 On the growth of layers of nonprecipitating cumulus convection. J. Atmos. Sci. 64, 29162931.CrossRefGoogle Scholar
Straub, K. H., Haertel, P. T. & Kiladis, G. N. 2010 An analysis of convectively coupled Kelvin waves in 20 WCRP CMIP3 global coupled climate models. J. Climate 23 (11), 30313056.CrossRefGoogle Scholar
Sukhatme, J., Majda, A. J. & Smith, L. M. 2012 Two-dimensional moist stratified turbulence and the emergence of vertically sheared horizontal flows. Phys. Fluids 24, 036602.CrossRefGoogle Scholar
Vallis, G. K. 2006 Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-scale Circulation. Cambridge University Press.CrossRefGoogle Scholar
Wu, X., Grabowski, W. W. & Moncrieff, M. W. 1998 Long-term behavior of cloud systems in TOGA COARE and their interactions with radiative and surface processes. Part I: two-dimensional modeling study. J. Atmos. Sci. 55 (17), 26932714.2.0.CO;2>CrossRefGoogle Scholar
Wu, X. & Moncrieff, M. W. 1996 Collective effects of organized convection and their approximation in general circulation models. J. Atmos. Sci. 53 (10), 14771495.2.0.CO;2>CrossRefGoogle Scholar
Xu, K. M. & Randall, D. A. 1996 Explicit simulation of cumulus ensembles with the GATE Phase III data: comparison with observations. J. Atmos. Sci. 53, 37103736.2.0.CO;2>CrossRefGoogle Scholar
Zhang, C. 2005 Madden–Julian oscillation. Rev. Geophys. 43, G2003+.CrossRefGoogle Scholar
29
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Minimal models for precipitating turbulent convection
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Minimal models for precipitating turbulent convection
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Minimal models for precipitating turbulent convection
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *