Skip to main content Accessibility help
Hostname: page-component-7f7b94f6bd-98q29 Total loading time: 0.838 Render date: 2022-06-29T00:57:20.340Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Modelling fluid deformable surfaces with an emphasis on biological interfaces

Published online by Cambridge University Press:  10 June 2019

Alejandro Torres-Sánchez
LaCàN, Universitat Politècnica de Catalunya – BarcelonaTech, 08034 Barcelona, Spain
Daniel Millán
LaCàN, Universitat Politècnica de Catalunya – BarcelonaTech, 08034 Barcelona, Spain CONICET and Facultad de Ciencias Aplicadas a la Industria, Universidad Nacional de Cuyo, 5600 San Rafael, Argentina
Marino Arroyo*
LaCàN, Universitat Politècnica de Catalunya – BarcelonaTech, 08034 Barcelona, Spain Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
Email address for correspondence:


Fluid deformable surfaces are ubiquitous in cell and tissue biology, including lipid bilayers, the actomyosin cortex or epithelial cell sheets. These interfaces exhibit a complex interplay between elasticity, low Reynolds number interfacial hydrodynamics, chemistry and geometry, and govern important biological processes such as cellular traffic, division, migration or tissue morphogenesis. To address the modelling challenges posed by this class of problems, in which interfacial phenomena tightly interact with the shape and dynamics of the surface, we develop a general continuum mechanics and computational framework for fluid deformable surfaces. The dual solid–fluid nature of fluid deformable surfaces challenges classical Lagrangian or Eulerian descriptions of deforming bodies. Here, we extend the notion of arbitrarily Lagrangian–Eulerian (ALE) formulations, well-established for bulk media, to deforming surfaces. To systematically develop models for fluid deformable surfaces, which consistently treat all couplings between fields and geometry, we follow a nonlinear Onsager formalism according to which the dynamics minimizes a Rayleighian functional where dissipation, power input and energy release rate compete. Finally, we propose new computational methods, which build on Onsager’s formalism and our ALE formulation, to deal with the resulting stiff system of higher-order partial differential equations. We apply our theoretical and computational methodology to classical models for lipid bilayers and the cell cortex. The methods developed here allow us to formulate/simulate these models in their full three-dimensional generality, accounting for finite curvatures and finite shape changes.

JFM Papers
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Aris, R. 1962 Vectors, Tensors, and the Basic Equations of Fluid Mechanics. Prentice-Hall.Google Scholar
Arroyo, M. & DeSimone, A. 2009 Relaxation dynamics of fluid membranes. Phys. Rev. E 79 (3), 031915.Google ScholarPubMed
Arroyo, M., DeSimone, A. & Heltai, L.2010 The role of membrane viscosity in the dynamics of fluid membranes. arXiv:1007.4934.Google Scholar
Arroyo, M., Heltai, L., Millán, D. & DeSimone, A. 2012 Reverse engineering the euglenoid movement. Proc. Natl Acad. Sci. USA 109 (44), 1787417879.CrossRefGoogle ScholarPubMed
Arroyo, M., Walani, N., Torres-Sánchez, A. & Kaurin, D. 2018 Onsager’s variational principle in soft matter: introduction and application to the dynamics of adsorption of proteins onto fluid membranes. In The Role of Mechanics in the Study of Lipid Bilayers (ed. Steigmann, D. J.), pp. 287332. Springer.CrossRefGoogle Scholar
Bacia, K., Schwille, P. & Kurzchalia, T. 2005 Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes. Proc. Natl Acad. Sci. USA 102 (9), 32723277.CrossRefGoogle ScholarPubMed
Barrett, J. W., Garcke, H. & Nürnberg, R. 2008 On the parametric finite element approximation of evolving hypersurfaces in R3. J. Comput. Phys. 227 (9), 42814307.CrossRefGoogle Scholar
Barrett, J. W., Garcke, H. & Nürnberg, R. 2015 Numerical computations of the dynamics of fluidic membranes and vesicles. Phys. Rev. E 92 (5), 052704.CrossRefGoogle ScholarPubMed
Barrett, J. W., Garcke, H. & Nürnberg, R. 2016 A stable numerical method for the dynamics of fluidic membranes. Numer. Math. 134 (4), 783822.CrossRefGoogle ScholarPubMed
Barthes-Biesel, D. & Sgaier, H. 1985 Role of membrane viscosity in the orientation and deformation of a spherical capsule suspended in shear flow. J. Fluid Mech. 160, 119135.CrossRefGoogle Scholar
Baumgart, T., Capraro, B. R., Zhu, C. & Das, S. L. 2011 Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids. Annu. Rev. Phys. Chem. 62, 483506.CrossRefGoogle ScholarPubMed
Bergert, M., Erzberger, A., Desai, R. A., Aspalter, I. M., Oates, A. C., Charras, G., Salbreux, G. & Paluch, E. K. 2015 Force transmission during adhesion-independent migration. Nat. Cell Biol. 17 (4), 524529.CrossRefGoogle ScholarPubMed
Biermann, H., Levin, A. & Zorin, D. 2000 Piecewise smooth subdivision surfaces with normal control. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 113120. ACM Press/Addison-Wesley.Google Scholar
Biria, A., Maleki, M. & Fried, E. 2013 Chapter one – continuum theory for the edge of an open lipid bilayer. In Advances in Applied Mechanics (ed. Bordas, S. P. A.), vol. 46, pp. 168. Elsevier.Google Scholar
Bray, D. & White, J. G. 1988 Cortical flow in animal cells. Science 239 (4842), 883888.CrossRefGoogle ScholarPubMed
Brezzi, F. & Fortin, M. 2012 Mixed and Hybrid Finite Element Methods. Springer Science & Business Media.Google Scholar
Brochard-Wyart, F. & de Gennes, P.-G. 2002 Adhesion induced by mobile binders: dynamics. Proc. Natl Acad. Sci. USA 99 (12), 78547859.CrossRefGoogle ScholarPubMed
Burman, E., Hansbo, P. & Larson, M. G. 2015 A stabilized cut finite element method for partial differential equations on surfaces: the Laplace–Beltrami operator. Comput. Meth. Appl. Mech. Engng 285, 188207.CrossRefGoogle Scholar
Callan-Jones, A. C., Ruprecht, V., Wieser, S., Heisenberg, C. P. & Voituriez, R. 2016 Cortical flow-driven shapes of nonadherent cells. Phys. Rev. Lett. 116 (2), 028102.CrossRefGoogle ScholarPubMed
Callan-Jones, A. C. & Voituriez, R. 2013 Active gel model of amoeboid cell motility. New J. Phys. 15 (2), 025022.CrossRefGoogle Scholar
Campillo, C., Sens, P., Köster, D., Pontani, L.-L., Lévy, D., Bassereau, P., Nassoy, P. & Sykes, C. 2013 Unexpected membrane dynamics unveiled by membrane nanotube extrusion. Biophys. J. 104 (6), 12481256.CrossRefGoogle ScholarPubMed
Capovilla, R. & Guven, J. 2002 Stresses in lipid membranes. J. Phys. A 35 (30), 62336247.CrossRefGoogle Scholar
do Carmo, M. P. 1992 Riemannian Geometry, vol. 115. Birkhäuser.CrossRefGoogle Scholar
do Carmo, M. P. 2016 Differential Geometry of Curves and Surfaces, 2nd edn. Dover.Google Scholar
Cermelli, P., Fried, E. & Gurtin, M. E. 2005 Transport relations for surface integrals arising in the formulation of balance laws for evolving fluid interfaces. J. Fluid Mech. 544, 339351.CrossRefGoogle Scholar
Chugh, P., Clark, A. G., Smith, M. B., Cassani, D. A. D., Dierkes, K., Ragab, A., Roux, P. P., Charras, G., Salbreux, G. & Paluch, E. K. 2017 Actin cortex architecture regulates cell surface tension. Nat. Cell Biol. 19 (6), 689697.CrossRefGoogle ScholarPubMed
Cirak, F. & Long, Q. 2011 Subdivision shells with exact boundary control and non-manifold geometry. Intl J. Numer. Meth. Engng 88, 897923.CrossRefGoogle Scholar
Cirak, F. & Ortiz, M. 2000 Schroder (2000) Subdivision surfaces: a new paradigm for thin shell finite-element analysis. Intl J. Numer. Meth. Engng 47 (12), 20392072.3.0.CO;2-1>CrossRefGoogle Scholar
Cirak, F. & Ortiz, M. 2001 Fully C1-conforming subdivision elements for finite deformation thin-shell analysis. Intl J. Numer. Meth. Engng 51 (7), 813833.CrossRefGoogle Scholar
Clark, A. G., Dierkes, K. & Paluch, E. K. 2013 Monitoring actin cortex thickness in live cells. Biophys. J. 105 (3), 570580.CrossRefGoogle ScholarPubMed
Dimova, R., Aranda, S., Bezlyepkina, N., Nikolov, V., Riske, K. A. & Lipowsky, R. 2006 A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy. J. Phys.: Condens. Matter 18 (28), S1151S1176.Google ScholarPubMed
Doi, M. 2011 Onsager’s variational principle in soft matter. J. Phys.: Condens. Matter 23 (28), 284118.Google ScholarPubMed
Donea, J. & Huerta, A. 2003 Finite Element Methods for Flow Problems, reprint edn. John Wiley & Sons.CrossRefGoogle Scholar
Dörries, G. & Foltin, G. 1996 Energy dissipation of fluid membranes. Phys. Rev. E 53 (3), 25472550.Google ScholarPubMed
Dortdivanlioglu, B., Krischok, A., Beirão da Veiga, L. & Linder, C. 2018 Mixed isogeometric analysis of strongly coupled diffusion in porous materials: mixed IGA of strongly coupled diffusion in porous materials. Intl J. Numer. Meth. Engng 114 (1), 2846.CrossRefGoogle Scholar
Dziuk, G. & Elliott, C. M. 2013 Finite element methods for surface PDEs. Acta Numer. 22, 289396.CrossRefGoogle Scholar
Elliott, C. M. & Styles, V. 2012 An ALE ESFEM for solving PDEs on evolving surfaces. Milan J. Math. 80 (2), 469501.CrossRefGoogle Scholar
Evans, E. & Yeung, A. 1994 Hidden dynamics in rapid changes of bilayer shape. Chem. Phys. Lipids 73 (1), 3956.CrossRefGoogle Scholar
Farutin, A. & Misbah, C. 2012 Rheology of vesicle suspensions under combined steady and oscillating shear flows. J. Fluid Mech. 700, 362381.CrossRefGoogle Scholar
Feng, F. & Klug, W. S. 2006 Finite element modeling of lipid bilayer membranes. J. Comput. Phys. 220 (1), 394408.CrossRefGoogle Scholar
Fischer, F. D., Svoboda, J. & Petryk, H. 2014 Thermodynamic extremal principles for irreversible processes in materials science. Acta Mater. 67, 120.CrossRefGoogle Scholar
Fournier, J.-B. 2015 On the hydrodynamics of bilayer membranes. Intl J. Non-Linear Mech. 75, 6776.CrossRefGoogle Scholar
Fournier, J.-B., Khalifat, N., Puff, N. & Angelova, M. I. 2009 Chemically triggered ejection of membrane tubules controlled by intermonolayer friction. Phys. Rev. Lett. 102 (1), 018102.CrossRefGoogle ScholarPubMed
Frenkel, D. & Smit, B. 2001 Understanding Molecular Simulation: From Algorithms to Applications, 2nd edn. Academic Press.Google Scholar
Fries, T.-P. 2018 Higher-order surface FEM for incompressible Navier–Stokes flows on manifolds. Intl J. Numer. Meth. Fluids 88 (2), 5578.CrossRefGoogle Scholar
Fritzsche, M., Lewalle, A., Duke, T., Kruse, K. & Charras, G. 2013 Analysis of turnover dynamics of the submembranous actin cortex. Mol. Biol. Cell 24 (6), 757767.CrossRefGoogle ScholarPubMed
Gompper, G. & Kroll, D. M. 2004 Triangulated-surface models of fluctuating membranes. In Statistical Mechanics of Membranes and Surfaces, pp. 359426. World Scientific.CrossRefGoogle Scholar
Gross, B. J. & Atzberger, P. J. 2018 Hydrodynamic flows on curved surfaces: spectral numerical methods for radial manifold shapes. J. Comput. Phys. 371, 663689.CrossRefGoogle Scholar
Hamm, M. & Kozlov, M. M. 1998 Tilt model of inverted amphiphilic mesophases. Eur. Phys. J. B 6 (4), 519528.CrossRefGoogle Scholar
Hamm, M. & Kozlov, M. M. 2000 Elastic energy of tilt and bending of fluid membranes. Eur. Phys. J. E 3 (4), 323335.Google Scholar
Hansbo, P., Larson, M. G. & Larsson, K.2016 Analysis of finite element methods for vector laplacians on surfaces. arXiv:1610.06747.Google Scholar
Hawkins, R. J., Poincloux, R., Bénichou, O., Piel, M., Chavrier, P. & Voituriez, R. 2011 Spontaneous contractility-mediated cortical flow generates cell migration in three-dimensional environments. Biophys. J. 101 (5), 10411045.CrossRefGoogle ScholarPubMed
Helfrich, W. 1973 Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. 28c, 693703.CrossRefGoogle Scholar
Henle, M. L. & Levine, A. J. 2010 Hydrodynamics in curved membranes: the effect of geometry on particulate mobility. Phys. Rev. E 81 (1), 117.Google ScholarPubMed
Hirt, C. W., Amsden, A. A. & Cook, J. L. 1974 An arbitrary Lagrangian–Eulerian computing method for all flow speeds. J. Comput. Phys. 14 (3), 227253.CrossRefGoogle Scholar
Ho, J. S. & Baumgärtner, A. 1990 Simulations of fluid self-avoiding membranes. Europhys. Lett. 12 (4), 295.CrossRefGoogle Scholar
Howard, J. 2001 Mechanics of Motor Proteins and the Cytoskeleton. Sinauer Associates, Publishers.Google Scholar
Hu, D., Zhang, P. & Weinan, E. 2007 Continuum theory of a moving membrane. Phys. Rev. E 75 (4), 111.Google ScholarPubMed
Jankuhn, T., Olshanskii, M. A. & Reusken, A. 2018 Incompressible fluid problems on embedded surfaces: modeling and variational formulations. Interfaces Free Boundaries 20, 353378.CrossRefGoogle Scholar
Jülicher, F. & Lipowsky, R. 1993 Domain-induced budding of vesicles. Phys. Rev. Lett. 70 (19), 29642967.CrossRefGoogle ScholarPubMed
Jüttler, B., Mantzaflaris, A., Perl, R. & Rumpf, M. 2016 On numerical integration in isogeometric subdivision methods for PDEs on surfaces. Comput. Meth. Appl. Mech. Engng 302, 131146.CrossRefGoogle Scholar
Kantsler, V., Segre, E. & Steinberg, V. 2007 Vesicle dynamics in time-dependent elongation flow: wrinkling instability. Phys. Rev. Lett. 99 (17), 178102.CrossRefGoogle ScholarPubMed
Khalifat, N., Puff, N., Bonneau, S., Fournier, J.-B. & Angelova, M. I. 2008 Membrane deformation under local pH gradient: mimicking mitochondrial cristae dynamics. Biophys. J. 95 (10), 49244933.CrossRefGoogle ScholarPubMed
Khalifat, N., Rahimi, M., Bitbol, A.-F., Seigneuret, M., Fournier, J.-B., Puff, N., Arroyo, M. & Angelova, M. I. 2014 Interplay of packing and flip-flop in local bilayer deformation. How phosphatidylglycerol could rescue mitochondrial function in a cardiolipin-deficient yeast mutant. Biophys. J. 107 (4), 879890.CrossRefGoogle Scholar
Koba, H., Liu, C. & Giga, Y. 2017 Energetic variational approaches for incompressible fluid systems on an evolving surface. Q. Appl. Maths 75 (2), 359389.CrossRefGoogle Scholar
Kosmalska, A. J., Casares, L., Elosegui-Artola, A., Thottacherry, J. J., Moreno-Vicente, R., González-Tarragó, V., del Pozo, M. Á., Mayor, S., Arroyo, M., Navajas, D. et al. 2015 Physical principles of membrane remodelling during cell mechanoadaptation. Nat. Commun. 6, 7292.CrossRefGoogle ScholarPubMed
Kroll, D. M. & Gompper, G. 1992 The conformation of fluid membranes: Monte Carlo simulations. Science 255 (5047), 968971.CrossRefGoogle ScholarPubMed
Laadhari, A., Saramito, P., Misbah, C. & Székely, G. 2017 Fully implicit methodology for the dynamics of biomembranes and capillary interfaces by combining the level set and Newton methods. J. Comput. Phys. 343, 271299.CrossRefGoogle Scholar
Lebon, G., Jou, D. & Casas-Vázquez, J. 2008 Understanding Non-equilibrium Thermodynamics: Foundations, Applications, Frontiers. Springer.CrossRefGoogle Scholar
Levayer, R. & Lecuit, T. 2012 Biomechanical regulation of contractility: spatial control and dynamics. Trends Cell Biol. 22 (2), 6181.CrossRefGoogle ScholarPubMed
Levine, A. J., Liverpool, T. B. & MacKintosh, F. C. 2004 Dynamics of rigid and flexible extended bodies in viscous films and membranes. Phys. Rev. Lett. 93 (3), 038102.CrossRefGoogle ScholarPubMed
Lew, A., Marsden, J. E., Ortiz, M. & West, M. 2004 Variational time integrators. Intl J. Numer. Meth. Engng 60 (1), 153212.CrossRefGoogle Scholar
Li, B., Millán, D., Torres-Sánchez, A., Roman, B. & Arroyo, M. 2018 A variational model of fracture for tearing brittle thin sheets. J. Mech. Phys. Solids 119, 334348.CrossRefGoogle Scholar
Lieber, A. D., Schweitzer, Y., Kozlov, M. M. & Keren, K. 2015 Front-to-rear membrane tension gradient in rapidly moving cells. Biophys. J. 108 (7), 15991603.CrossRefGoogle ScholarPubMed
Lipowsky, R. 1991 The conformation of membranes. Nature 349 (6309), 475481.CrossRefGoogle ScholarPubMed
Liu, W. K., Liu, Y., Farrell, D., Zhang, L., Wang, X. S., Fukui, Y., Patankar, N., Zhang, Y., Bajaj, C., Lee, J., Hong, J., Chen, X. & Hsu, H. 2006 Immersed finite element method and its applications to biological systems. Comput. Meth. Appl. Mech. Engng 195 (13–16), 17221749.CrossRefGoogle ScholarPubMed
Liu, Y.-J., Le Berre, M., Lautenschlaeger, F., Maiuri, P., Callan-Jones, A., Heuzé, M., Takaki, T., Voituriez, R. & Piel, M. 2015 Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell 160 (4), 659672.CrossRefGoogle ScholarPubMed
Loop, C.1987 Smooth subdivision surfaces based on triangles. PhD thesis, University of Utah.Google Scholar
Ma, L. & Klug, W. S. 2008 Viscous regularization and r-adaptive remeshing for finite element analysis of lipid membrane mechanics. J. Comput. Phys. 227 (11), 58165835.CrossRefGoogle Scholar
Marsden, J. E. & Hughes, T. J. R. 1994 Mathematical Foundations of Elasticity. Courier Corporation.Google Scholar
Martyushev, L. M. & Seleznev, V. D. 2006 Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 426 (1), 145.CrossRefGoogle Scholar
Miao, L., Seifert, U., Wortis, M. & Döbereiner, H. G. 1994 Budding transitions of fluid-bilayer vesicles: the effect of area-difference elasticity. Phys. Rev. E 49 (6), 53895407.Google ScholarPubMed
Mickelin, O., Słomka, J., Burns, K. J., Lecoanet, D., Vasil, G. M., Faria, L. M. & Dunkel, J. 2018 Anomalous chained turbulence in actively driven flows on spheres. Phys. Rev. Lett. 120 (16), 164503.CrossRefGoogle ScholarPubMed
Mielke, A. 2012 Thermomechanical modeling of energy-reaction-diffusion systems, including bulk-interface interactions. Discrete Continuous Dyn. Syst. – Ser. S 6 (2), 479499.CrossRefGoogle Scholar
Mietke, A., Jülicher, F. & Sbalzarini, I. F. 2019 Self-organized shape dynamics of active surfaces. Proc. Natl Acad. Sci. USA 116 (1), 2934.CrossRefGoogle ScholarPubMed
Millán, D., Rosolen, A. & Arroyo, M. 2011 Thin shell analysis from scattered points with maximum-entropy approximants. Intl J. Numer. Meth. Engng 85 (6), 723751.CrossRefGoogle Scholar
Morris, R. G. & Turner, M. S. 2015 Mobility measurements probe conformational changes in membrane proteins due to tension. Phys. Rev. Lett. 115 (19), 198101.CrossRefGoogle ScholarPubMed
Nelson, P., Powers, T. & Seifert, U. 1995 Dynamical theory of the pearling instability in cylindrical vesicles. Phys. Rev. Lett. 74 (17), 33843387.CrossRefGoogle ScholarPubMed
Nestler, M., Nitschke, I., Praetorius, S. & Voigt, A. 2018 Orientational order on surfaces: the coupling of topology, geometry, and dynamics. J. Nonlinear Sci. 28 (1), 147191.CrossRefGoogle Scholar
Nitschke, I., Voigt, A. & Wensch, J. 2012 A finite element approach to incompressible two-phase flow on manifolds. J. Fluid Mech. 708, 418438.CrossRefGoogle Scholar
Noguchi, H. & Gompper, G. 2005 Shape transitions of fluid vesicles and red blood cells in capillary flows. Proc. Natl Acad. Sci. USA 102 (40), 1415914164.CrossRefGoogle ScholarPubMed
Noselli, G., Bean, A., Arroyo, M. & DeSimone, A. 2019 Swimming Euglena respond to confinement with a behavioural change enabling effective crawling. Nat. Phys. 15 (5), 496502.CrossRefGoogle ScholarPubMed
Olshanskii, M., Quaini, A., Reusken, A. & Yushutin, V. 2018 A finite element method for the surface stokes problem. SIAM J. Sci. Comput. 40 (4), A2492A2518.CrossRefGoogle Scholar
Ortiz, M. & Stainier, L. 1999 The variational formulation of viscoplastic constitutive updates. Comput. Meth. Appl. Mech. Engng 171 (3), 419444.CrossRefGoogle Scholar
Paltridge, G. W. 1975 Global dynamics and climate – a system of minimum entropy exchange. Q. J. R. Meteorol. Soc. 101 (429), 475484.CrossRefGoogle Scholar
Peco, C., Rosolen, A. & Arroyo, M. 2013 An adaptive meshfree method for phase-field models of biomembranes. Part II: a Lagrangian approach for membranes in viscous fluids. J. Comput. Phys. 249, 320336.Google Scholar
Peletier, M.2014 Variational modelling: energies, gradient flows, and large deviations. Preprint, arXiv:1402.1990.Google Scholar
Peng, Z., Li, X., Pivkin, I. V., Dao, M., Karniadakis, G. E. & Suresh, S. 2013 Lipid bilayer and cytoskeletal interactions in a red blood cell. Proc. Natl Acad. Sci. USA 110 (33), 1335613361.Google Scholar
Piegl, L. & Tiller, W. 2012 The NURBS Book. Springer Science & Business Media.Google Scholar
Poincloux, R., Collin, O., Lizárraga, F., Romao, M., Debray, M., Piel, M. & Chavrier, P. 2011 Contractility of the cell rear drives invasion of breast tumor cells in 3D Matrigel. Proc. Natl Acad. Sci. USA 108 (5), 19431948.CrossRefGoogle ScholarPubMed
Prost, J., Jülicher, F. & Joanny, J.-F. 2015 Active gel physics. Nat. Phys. 11 (2), 111.CrossRefGoogle Scholar
Rahimi, M.2013 Shape dynamics and lipid hydrodynamics of bilayer membranes: modeling, simulation and experiments. PhD thesis, Universitat Politècnica de Catalunya – BarcelonaTech.Google Scholar
Rahimi, M. & Arroyo, M. 2012 Shape dynamics, lipid hydrodynamics, and the complex viscoelasticity of bilayer membranes. Phys. Rev. E 86 (1), 011932.Google ScholarPubMed
Rahimi, M., DeSimone, A. & Arroyo, M. 2013 Curved fluid membranes behave laterally as effective viscoelastic media. Soft Matt. 9 (46), 1103311045.Google Scholar
Rangarajan, R. & Gao, H. 2015 A finite element method to compute three-dimensional equilibrium configurations of fluid membranes: optimal parameterization, variational formulation and applications. J. Comput. Phys. 297, 266294.Google Scholar
Rangarajan, R., Kabaria, H. & Lew, A. 2019 An algorithm for triangulating smooth three-dimensional domains immersed in universal meshes: meshing domains immersed in universal meshes. Intl J. Numer. Meth. Engng 117 (1), 84117.CrossRefGoogle Scholar
Reuther, S. & Voigt, A. 2015 The interplay of curvature and vortices in flow on curved surfaces. Multiscale Model. Simul. 13 (2), 632643.Google Scholar
Reuther, S. & Voigt, A. 2016 Incompressible two-phase flows with an inextensible Newtonian fluid interface. J. Comput. Phys. 322, 850858.CrossRefGoogle Scholar
Reuther, S. & Voigt, A. 2018a Erratum: the interplay of curvature and vortices in flow on curved surfaces. Multiscale Model. Simul. 16 (3), 14481453.CrossRefGoogle Scholar
Reuther, S. & Voigt, A. 2018b Solving the incompressible surface Navier–Stokes equation by surface finite elements. Phys. Fluids 30 (1), 012107.CrossRefGoogle Scholar
Reymann, A.-C., Staniscia, F., Erzberger, A., Salbreux, G. & Grill, S. W. 2016 Cortical flow aligns actin filaments to form a furrow. Elife 5, 125.CrossRefGoogle Scholar
Rodrigues, D. S., Ausas, R. F., Mut, F. & Buscaglia, G. C. 2015 A semi-implicit finite element method for viscous lipid membranes. J. Comput. Phys. 298, 565584.CrossRefGoogle Scholar
Roux, A., Cappello, G., Cartaud, J., Prost, J., Goud, B. & Bassereau, P. 2002 A minimal system allowing tubulation with molecular motors pulling on giant liposomes. Proc. Natl Acad. Sci. USA 99 (8), 53945399.CrossRefGoogle ScholarPubMed
Ruprecht, V., Wieser, S., Callan-Jones, A., Smutny, M., Morita, H., Sako, K., Barone, V., Ritsch-Marte, M., Sixt, M., Voituriez, R. & Heisenberg, C.-P. 2015 Cortical contractility triggers a stochastic switch to fast amoeboid cell motility. Cell 160 (4), 673685.CrossRefGoogle ScholarPubMed
Rustom, A., Saffrich, R., Markovic, I., Walther, P. & Gerdes, H.-H. 2004 Nanotubular highways for intercellular organelle transport. Science 303 (5660), 10071010.CrossRefGoogle ScholarPubMed
Saffman, P. G. & Delbrück, M. 1975 Brownian motion in biological membranes. Proc. Natl Acad. Sci. USA 72 (8), 31113113.CrossRefGoogle ScholarPubMed
Saha, A., Nishikawa, M., Behrndt, M., Heisenberg, C.-P., Jülicher, F. & Grill, S. W. 2016 Determining physical properties of the cell cortex. Biophys. J. 110 (6), 14211429.CrossRefGoogle ScholarPubMed
Sahu, A., Sauer, R. A. & Mandadapu, K. K. 2017 Irreversible thermodynamics of curved lipid membranes. Phys. Rev. E 96 (4), 042409.Google ScholarPubMed
Salac, D. & Miksis, M. 2011 A level set projection model of lipid vesicles in general flows. J. Comput. Phys. 230 (22), 81928215.Google Scholar
Salbreux, G., Charras, G. & Paluch, E. 2012 Actin cortex mechanics and cellular morphogenesis. Trends Cell Biol. 22 (10), 536545.CrossRefGoogle ScholarPubMed
Salbreux, G. & Jülicher, F. 2017 Mechanics of active surfaces. Phys. Rev. E 96 (3), 032404.Google ScholarPubMed
Salbreux, G., Prost, J. & Joanny, J. F. 2009 Hydrodynamics of cellular cortical flows and the formation of contractile rings. Phys. Rev. Lett. 103 (5), 058102.CrossRefGoogle ScholarPubMed
Santos-Oliván, D., Torres-Sánchez, A., Vilanova, G. & Arroyo, M.2019 A macroelement approach for inextensible flows with subdivision finite elements. (in preparation).Google Scholar
Sauer, R. A., Duong, T. X., Mandadapu, K. & Steigmann, D. 2017 A stabilized finite element formulation for liquid shells and its application to lipid bilayers. J. Comput. Phys. 330, 119.CrossRefGoogle Scholar
Scriven, L. E. 1960 Dynamics of a fluid interface Equation of motion for Newtonian surface fluids. Chem. Engng Sci. 12 (2), 98108.CrossRefGoogle Scholar
Secomb, T. W. & Skalak, R. 1982 Surface flow of viscoelastic membranes in viscous fluids. Q. J. Mech. Appl. Maths 35 (2), 233247.CrossRefGoogle Scholar
Seifert, U. 1997 Configurations of fluid membranes and vesicles. Adv. Phys. 46 (1), 13137.CrossRefGoogle Scholar
Seifert, U. & Langer, S. A. 1993 Viscous modes of fluid bilayer membranes. Europhys. Lett. 23 (1), 7176.CrossRefGoogle Scholar
Sens, P., Johannes, L. & Bassereau, P. 2008 Biophysical approaches to protein-induced membrane deformations in trafficking. Curr. Opin. Cell Biol. 20 (4), 476482.CrossRefGoogle ScholarPubMed
Shen, Z., Fischer, T. M., Farutin, A., Vlahovska, P. M., Harting, J. & Misbah, C. 2018 Blood crystal: emergent order of red blood cells under wall-confined shear flow. Phys. Rev. Lett. 120 (26), 268102.CrossRefGoogle ScholarPubMed
Shibata, Y., Hu, J., Kozlov, M. M. & Rapoport, T. A. 2009 Mechanisms shaping the membranes of cellular organelles. Annu. Rev. Cell Dev. Biol. 25, 329354.CrossRefGoogle ScholarPubMed
Sigurdsson, J. K. & Atzberger, P. J. 2016 Hydrodynamic coupling of particle inclusions embedded in curved lipid bilayer membranes. Soft Matt. 12 (32), 66856707.CrossRefGoogle ScholarPubMed
Skalak, R. 1970 Extensions of extremum principles for slow viscous flows. J. Fluid Mech. 42 (3), 527548.CrossRefGoogle Scholar
Sprong, H., van der Sluijs, P. & van Meer, G. 2001 How proteins move lipids and lipids move proteins. Nat. Rev. Mol. Cell Biol. 2 (7), 504513.CrossRefGoogle ScholarPubMed
Stam, J. 1999 Evaluation of Loop subdivision surfaces. In SIGGRAPH’99 Course Notes. Los Angeles, CA.Google Scholar
Staneva, G., Angelova, M. I. & Koumanov, K. 2004 Phospholipase A2 promotes raft budding and fission from giant liposomes. Chem. Phys. Lipids 129 (1), 5362.CrossRefGoogle ScholarPubMed
Staykova, M., Arroyo, M., Rahimi, M. & Stone, H. A. 2013 Confined bilayers passively regulate shape and stress. Phys. Rev. Lett. 110 (2), 028101.CrossRefGoogle Scholar
Steigmann, D. J. 1999 Fluid films with curvature elasticity. Arch. Rat. Mech. Anal. 150 (2), 127152.CrossRefGoogle Scholar
Stone, H. A. & Ajdari, A. 1998 Hydrodynamics of particles embedded in a flat surfactant layer overlying a subphase of finite depth. J. Fluid Mech. 369, 151173.Google Scholar
Torres-Sánchez, A.2017 A theoretical and computational study of the mechanics of biomembranes at multiple scales. PhD thesis, Universitat Politècnica de Catalunya.Google Scholar
Torres-Sánchez, A., Santos-Oliván, D. & Arroyo, M.2019 Approximation of tensor fields on surfaces of arbitrary topology based on local Monge parametrizations. arXiv:1904.06390.Google Scholar
Tsafrir, I., Caspi, Y., Guedeau-Boudeville, M.-A., Arzi, T. & Stavans, J. 2003 Budding and tubulation in highly oblate vesicles by anchored amphiphilic molecules. Phys. Rev. Lett. 91 (13), 138102.CrossRefGoogle ScholarPubMed
Tu, Z. C. & Ou-Yang, Z. C. 2004 A geometric theory on the elasticity of bio-membranes. J. Phys. A 37 (47), 1140711429.CrossRefGoogle Scholar
Turlier, H., Audoly, B., Prost, J. & Joanny, J.-F. 2014 Furrow constriction in animal cell cytokinesis. Biophys. J. 106 (1), 114123.CrossRefGoogle ScholarPubMed
Veerapaneni, S. K., Rahimian, A., Biros, G. & Zorin, D. 2011 A fast algorithm for simulating vesicle flows in three dimensions. J. Comput. Phys. 230 (14), 56105634.CrossRefGoogle Scholar
Willmore, T. J. 1996 Riemannian Geometry. Oxford University Press.Google Scholar
Woodhouse, F. G. & Goldstein, R. E. 2012 Shear-driven circulation patterns in lipid membrane vesicles. J. Fluid Mech. 705, 165175.CrossRefGoogle Scholar
Wu, J.-Z., Yang, Y.-T., Luo, Y.-B. & Pozrikidis, C. 2005 Fluid kinematics on a deformable surface. J. Fluid Mech. 541, 371381.CrossRefGoogle Scholar
Yavari, A., Ozakin, A. & Sadik, S. 2016 Nonlinear elasticity in a deforming ambient space. J. Nonlinear Sci. 26 (6), 16511692.CrossRefGoogle Scholar
Zhang, K. & Arroyo, M. 2014 Understanding and strain-engineering wrinkle networks in supported graphene through simulations. J. Mech. Phys. Solids 72, 6174.CrossRefGoogle Scholar
Zhou, Y. & Yan, D. 2005 Real-time membrane fission of giant polymer vesicles. Angew. Chem. Intl Ed. Engl. 44 (21), 32233226.CrossRefGoogle ScholarPubMed
Ziegler, H. 1958 An attempt to generalize Onsager’s principle, and its significance for rheological problems. Z. Angew. Math. Phys. 9 (5–6), 748763.CrossRefGoogle Scholar
Ziegler, H. & Wehrli, C. 1987 The derivation of constitutive relations from the free energy and the dissipation function. In Advances in Applied Mechanics (ed. Wu, T. Y. & Hutchinson, J. W.), vol. 25, pp. 183238. Elsevier.Google Scholar

Torres-Sánchez supplementary movie 1

Remeshing during the relaxation dynamics of an inextensible monolayer with bending energy.

Download Torres-Sánchez supplementary movie 1(Video)
Video 6 MB

Torres-Sánchez supplementary movie 2

Relaxation dynamics of a density disturbance of 25% in the outer monolayer of a lipid bilayer modelled with the Seifert-Langer model. The density disturbance drives flows and also shape changes before relaxing to an equilibrium.

Download Torres-Sánchez supplementary movie 2(Video)
Video 467 KB

Torres-Sánchez supplementary movie 3

Self-polarization of a compressed and non-adherent cell leading to cell migration. An initial density disturbance and a sufficiently large contractile activity lead to cortical flows and shape changes that result in the self-polarization of the cell, with a steady state in which a continuous flow from the front to the rear of the cell is sustained. Friction with the confining plates leads to cell migration.

Download Torres-Sánchez supplementary movie 3(Video)
Video 1 MB
Cited by

Linked content

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Modelling fluid deformable surfaces with an emphasis on biological interfaces
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Modelling fluid deformable surfaces with an emphasis on biological interfaces
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Modelling fluid deformable surfaces with an emphasis on biological interfaces
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *