Hostname: page-component-65b85459fc-lvhvp Total loading time: 0 Render date: 2025-10-15T08:53:54.002Z Has data issue: false hasContentIssue false

Modelling mesoscale turbulence in clustered gas–solid flows based on particle-resolved simulation data

Published online by Cambridge University Press:  13 October 2025

Yan Xia
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic System, Department of Mechanics, Zhejiang University, Hangzhou 310027, PR China
Zhaowu Lin
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic System, Department of Mechanics, Zhejiang University, Hangzhou 310027, PR China
Zhaosheng Yu*
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic System, Department of Mechanics, Zhejiang University, Hangzhou 310027, PR China
*
Corresponding author: Zhaosheng Yu, yuzhaosheng@zju.edu.cn

Abstract

Gas-phase turbulence in a bubbling gas–solid fluidised bed is modelled using the data from particle-resolved direct numerical simulations. The subgrid particle-induced turbulent kinetic energy (TKE) is modelled as a function of filter width, filtered solid volume fraction, particle Reynolds number and filtered gas-phase strain rate tensor. Within the volume-filtered framework, we demonstrate that the fluid Reynolds stress models originally developed for a homogeneous system remain applicable to the inhomogeneous fluidised bed, provided that the inhomogeneous drag and particle-induced TKE models are used for the dissipation rate interfacial term. An algebraic model for the anisotropy of gas-phase velocity variance is developed by simplifying the proposed Reynolds stress equation model, which incorporates the effects from both filtered slip velocity and filtered fluid strain rate. The new models are shown to agree well with the direct numerical simulation data of clustered particle settling systems, indicating good applicability of our models for various clustered particle-laden flows.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Anderson, T.B. & Jackson, R. 1967 Fluid mechanical description of fluidized beds. Equations of motion. Ind. Engng Chem. Fundam. 6 (4), 527539.10.1021/i160024a007CrossRefGoogle Scholar
Baker, M.C., Fox, R.O., Kong, B., Capecelatro, J. & Desjardins, O. 2020 Reynolds-stress modeling of cluster-induced turbulence in particle-laden vertical channel flow. Phys. Rev. Fluids 5 (7), 074304.10.1103/PhysRevFluids.5.074304CrossRefGoogle Scholar
Balachandar, S., Peng, C. & Wang, L.-P. 2024 Turbulence modulation by suspended finite-sized particles: toward physics-based multiphase subgrid modeling. Phys. Rev. Fluids 9 (4), 044304.10.1103/PhysRevFluids.9.044304CrossRefGoogle Scholar
Beetham, S., Fox, R.O. & Capecelatro, J. 2021 Sparse identification of multiphase turbulence closures for coupled fluid–particle flows. J. Fluid Mech. 914, A11.10.1017/jfm.2021.53CrossRefGoogle Scholar
Brändle De Motta, J.C., Breugem, W.-P., Gazanion, B., Estivalezes, J.-L., Vincent, S. & Climent, E. 2013 Numerical modelling of finite-size particle collisions in a viscous fluid. Phys. Fluids 25 (8), 083302.10.1063/1.4817382CrossRefGoogle Scholar
Capecelatro, J. & Desjardins, O. 2013 a An Euler–Lagrange strategy for simulating particle-laden flows. J. Comput. Phys. 238, 131.10.1016/j.jcp.2012.12.015CrossRefGoogle Scholar
Capecelatro, J. & Desjardins, O. 2013 b Eulerian–Lagrangian modeling of turbulent liquid–solid slurries in horizontal pipes. Intl J. Multiphase Flow 55, 6479.10.1016/j.ijmultiphaseflow.2013.04.006CrossRefGoogle Scholar
Capecelatro, J., Desjardins, O. & Fox, R.O. 2016 a Strongly coupled fluid-particle flows in vertical channels. I. Reynolds-averaged two-phase turbulence statistics. Phys. Fluids 28 (3), 033306.10.1063/1.4943231CrossRefGoogle Scholar
Capecelatro, J., Desjardins, O. & Fox, R.O. 2016 b Strongly coupled fluid-particle flows in vertical channels. II. Turbulence modeling. Phys. Fluids 28 (3), 033306.10.1063/1.4943231CrossRefGoogle Scholar
Cokljat, D., Slack, M., Vasquez, S.A., Bakker, A. & Montante, G. 2006 Reynolds-stress model for Eulerian multiphase. Prog. Comput. Fluid Dyn. Intl J. 6 (1–3), 168178.10.1504/PCFD.2006.009494CrossRefGoogle Scholar
Colombo, M. & Fairweather, M. 2015 Multiphase turbulence in bubbly flows: RANS simulations. Intl J. Multiphase Flow 77, 222243.10.1016/j.ijmultiphaseflow.2015.09.003CrossRefGoogle Scholar
Crowe, C.T., Schwarzkopf, J.D., Sommerfeld, M. & Tsuji, Y. 2011 Multiphase Flows with Droplets and Particles. CRC press.10.1201/b11103CrossRefGoogle Scholar
Crowe, C.T. 2000 On models for turbulence modulation in fluid–particle flows. Intl J. Multiphase Flow 26 (5), 719727.10.1016/S0301-9322(99)00050-6CrossRefGoogle Scholar
Dabbagh, F. & Schneiderbauer, S. 2021 Small-scale flow topologies, pseudo-turbulence, and impact on filtered drag models in turbulent fluidization. Phys. Rev. Fluids 6 (7), 074301.10.1103/PhysRevFluids.6.074301CrossRefGoogle Scholar
Dabbagh, F. & Schneiderbauer, S. 2022 Anisotropy characterization of turbulent fluidization. Phys. Rev. Fluids 7 (9), 094301.10.1103/PhysRevFluids.7.094301CrossRefGoogle Scholar
Deen, N.G., Van Sint Annaland, M., Van der Hoef, M.A. & Kuipers, J.A.M. 2007 Review of discrete particle modeling of fluidized beds. Chem. Engng Sci. 62 (1–2), 2844.10.1016/j.ces.2006.08.014CrossRefGoogle Scholar
Ding, J. & Gidaspow, D. 1990 A bubbling fluidization model using kinetic theory of granular flow. AIChE J. 36 (4), 523538.10.1002/aic.690360404CrossRefGoogle Scholar
Du Cluzeau, A., Bois, G. & Toutant, A. 2019 Analysis and modelling of reynolds stresses in turbulent bubbly up-flows from direct numerical simulations. J. Fluid Mech. 866, 132168.10.1017/jfm.2019.100CrossRefGoogle Scholar
Fox, R.O. 2012 Large-eddy-simulation tools for multiphase flows. Annu. Rev. Fluid Mech. 44 (1), 4776.10.1146/annurev-fluid-120710-101118CrossRefGoogle Scholar
Fox, R.O. 2014 On multiphase turbulence models for collisional fluid–particle flows. J. Fluid Mech. 742, 368424.10.1017/jfm.2014.21CrossRefGoogle Scholar
Glowinski, R., Pan, T.-W., Hesla, T.I. & Joseph, D.D. 1999 A distributed lagrange multiplier/fictitious domain method for particulate flows. Intl J. Multiphase Flow 25 (5), 755794.10.1016/S0301-9322(98)00048-2CrossRefGoogle Scholar
Hanjalić, K. & Launder, B.E. 1976 Contribution towards a Reynolds-stress closure for low-Reynolds-number turbulence. J. Fluid Mech. 74 (4), 593610.10.1017/S0022112076001961CrossRefGoogle Scholar
Hausmann, M., Chéron, V., Evrard, F. & van Wachem, B. 2024 Study and derivation of closures in the volume-filtered framework for particle-laden flows. J. Fluid Mech. 996, A41.10.1017/jfm.2024.573CrossRefGoogle Scholar
van der Hoef, M.A., van Sint Annaland, M., Deen, N.G. & Kuipers, J.A.M. 2008 Numerical simulation of dense gas-solid fluidized beds: a multiscale modeling strategy. Annu. Rev. Fluid Mech. 40 (1), 4770.10.1146/annurev.fluid.40.111406.102130CrossRefGoogle Scholar
Hrenya, C.M., Bolio, E.J., Chakrabarti, D. & Sinclair, J.L. 1995 Comparison of low Reynolds number k- $\varepsilon$ turbulence models in predicting fully developed pipe flow. Chem. Engng Sci. 50 (12), 19231941.10.1016/0009-2509(95)00035-4CrossRefGoogle Scholar
Igci, Y., Andrews IV, A.T., Sundaresan, S., Pannala, S. & OBrien, T. 2008 Filtered two‐fluid models for fluidized gas‐particle suspensions. AIChE J. 54 (6), 14311448.10.1002/aic.11481CrossRefGoogle Scholar
Ishii, M. & Hibiki, T. 2010 Thermo-Fluid Dynamics of Two-Phase Flow. Springer Science & Business Media.Google Scholar
Jiang, M., Chen, X. & Zhou, Q. 2020 A gas pressure gradient‐dependent subgrid drift velocity model for drag prediction in fluidized gas–particle flows. AIChE J. 66 (4), e16884.10.1002/aic.16884CrossRefGoogle Scholar
Kataoka, I., Besnard, D.C. & Serizawa, A. 1992 Basic equation of turbulence and modeling of interfacial transfer terms in gas–liquid two-phase flow. Chem. Engng Commun. 118 (1), 221236.10.1080/00986449208936095CrossRefGoogle Scholar
Liu, X., Ge, W. & Wang, L. 2020 Scale and structure dependent drag in gas–solid flows. AIChE J. 66 (4), e16883.10.1002/aic.16883CrossRefGoogle Scholar
Lumley, J.L. 1979 Computational modeling of turbulent flows. Adv. Appl. Mech. 18, 123176.10.1016/S0065-2156(08)70266-7CrossRefGoogle Scholar
Lumley, J.L. & Newman, G.R. 1977 The return to isotropy of homogeneous turbulence. J. Fluid Mech. 82 (1), 161178.10.1017/S0022112077000585CrossRefGoogle Scholar
Luo, K., Tan, J., Wang, Z. & Fan, J. 2016 Particle-resolved direct numerical simulation of gas–solid dynamics in experimental fluidized beds. AIChE J. 62 (6), 19171932.10.1002/aic.15186CrossRefGoogle Scholar
Ma, T., Lucas, D. & Bragg, A.D. 2020 a Explicit algebraic relation for calculating reynolds normal stresses in flows dominated by bubble-induced turbulence. Phys. Rev. Fluids 5 (8), 084305.10.1103/PhysRevFluids.5.084305CrossRefGoogle Scholar
Ma, T., Lucas, D., Jakirlić, S. & Fröhlich, J. 2020 b Progress in the second-moment closure for bubbly flow based on direct numerical simulation data. J. Fluid Mech. 883, A9.10.1017/jfm.2019.851CrossRefGoogle Scholar
Ma, T., Santarelli, C., Ziegenhein, T., Lucas, D. & Fröhlich, J. 2017 Direct numerical simulation–based Reynolds-averaged closure for bubble-induced turbulence. Phys. Rev. Fluids 2 (3), 034301.10.1103/PhysRevFluids.2.034301CrossRefGoogle Scholar
Masood, R.M.A., Rauh, C. & Delgado, A. 2014 CFD simulation of bubble column flows: an explicit algebraic Reynolds stress model approach. Intl J. Multiphase Flow 66, 1125.10.1016/j.ijmultiphaseflow.2014.06.008CrossRefGoogle Scholar
Mehrabadi, M., Tenneti, S., Garg, R. & Subramaniam, S. 2015 Pseudo-turbulent gas-phase velocity fluctuations in homogeneous gas–solid flow: fixed particle assemblies and freely evolving suspensions. J. Fluid Mech. 770, 210246.10.1017/jfm.2015.146CrossRefGoogle Scholar
Milioli, C.C., Milioli, F.E., Holloway, W., Agrawal, K. & Sundaresan, S. 2013 Filtered two‐fluid models of fluidized gas‐particle flows: new constitutive relations. AIChE J. 59 (9), 32653275.10.1002/aic.14130CrossRefGoogle Scholar
Müller, C.., Holland, D.J., Sederman, A.J., Scott, S.A., Dennis, J.S. & Gladden, L.F. 2008 Granular temperature: comparison of magnetic resonance measurements with discrete element model simulations. Powder Technol. 184 (2), 241253.10.1016/j.powtec.2007.11.046CrossRefGoogle Scholar
Ozel, A., Fede, P. & Simonin, O. 2013 Development of filtered Euler–Euler two-phase model for circulating fluidised bed: high resolution simulation, formulation and a priori analyses. Intl J. Multiphase Flow 55, 4363.10.1016/j.ijmultiphaseflow.2013.04.002CrossRefGoogle Scholar
Ozel, A., Gu, Y., Milioli, C.C., Kolehmainen, J. & Sundaresan, S. 2017 a Towards filtered drag force model for non-cohesive and cohesive particle-gas flows. Phys. Fluids 29 (10), 103308.10.1063/1.5000516CrossRefGoogle Scholar
Ozel, A., Brändle de Motta, J.C., Abbas, M., Fede, P., Masbernat, O., Vincent, S., Estivalezes, J.-L. & Simonin, O. 2017 b Particle resolved direct numerical simulation of a liquid–solid fluidized bed: Comparison with experimental data. Intl J. Multiphase Flow 89, 228240.10.1016/j.ijmultiphaseflow.2016.10.013CrossRefGoogle Scholar
Parmentier, J.-F., Simonin, O. & Delsart, O. 2012 A functional subgrid drift velocity model for filtered drag prediction in dense fluidized bed. AIChE J. 58 (4), 10841098.10.1002/aic.12647CrossRefGoogle Scholar
Peng, C., Ayala, O.M. & Wang, L.P. 2019 A direct numerical investigation of two-way interactions in a particle-laden turbulent channel flow. J. Fluid Mech. 875, 10961144.10.1017/jfm.2019.509CrossRefGoogle Scholar
Politano, M.S., Carrica, P.M. & Converti, J. 2003 A model for turbulent polydisperse two-phase flow in vertical channels. Intl J. Multiphase Flow 29 (7), 11531182.10.1016/S0301-9322(03)00065-XCrossRefGoogle Scholar
Pope, S.B. 2001 Turbulent flows. Meas. Sci. Technol. 12 (11), 20202021.10.1088/0957-0233/12/11/705CrossRefGoogle Scholar
Rauchenzauner, S. & Schneiderbauer, S. 2020 A dynamic anisotropic spatially-averaged two-fluid model for moderately dense gas-particle flows. Intl J. Multiphase Flow 126, 103237.10.1016/j.ijmultiphaseflow.2020.103237CrossRefGoogle Scholar
Rauchenzauner, S. & Schneiderbauer, S. 2022 A dynamic multiphase turbulence model for coarse-grid simulations of fluidized gas-particle suspensions. Chem. Engng Sci. 247, 117104.10.1016/j.ces.2021.117104CrossRefGoogle Scholar
Riella, M., Kahraman, R. & Tabor, G.R. 2019 Inhomogeneity and anisotropy in Eulerian–Eulerian near-wall modelling. Intl J. Multiphase Flow 114, 918.10.1016/j.ijmultiphaseflow.2019.01.014CrossRefGoogle Scholar
Risso, F., Roig, V., Amoura, Z., Riboux, G. & Billet, A.-M. 2008 Wake attenuation in large Reynolds number dispersed two-phase flows. Phil. Trans. R. Soc. A Math. Phys. Engng Sci. 366 (1873), 21772190.10.1098/rsta.2008.0002CrossRefGoogle ScholarPubMed
Rodi, W. 1976 A new algebraic relation for calculating the Reynolds stresses. ZAMM-J. Appl. Math. Mech. 56 (S1), T219T221.10.1002/zamm.19765613093CrossRefGoogle Scholar
Rubinstein, G.J., Ozel, A., Yin, X., Derksen, J.J. & Sundaresan, S. 2017 Lattice Boltzmann simulations of low-Reynolds-number flows past fluidized spheres: effect of inhomogeneities on the drag force. J. Fluid Mech. 833, 599630.10.1017/jfm.2017.705CrossRefGoogle Scholar
Rzehak, R. & Krepper, E. 2013 CFD modeling of bubble-induced turbulence. Intl J. Multiphase Flow 55, 138155.10.1016/j.ijmultiphaseflow.2013.04.007CrossRefGoogle Scholar
Sagaut, P. 2005 Large Eddy Simulation for Incompressible Flows: an Introduction. Springer Science & Business Media.Google Scholar
Sato, Y. & Hishida, K. 1996 Transport process of turbulence energy in particle-laden turbulent flow. Intl J. Heat Fluid Flow 17 (3), 202210.10.1016/0142-727X(96)00035-5CrossRefGoogle Scholar
Schneiderbauer, S. 2017 A spatially‐averaged two‐fluid model for dense large‐scale gas‐solid flows. AIChE J. 63 (8), 35443562.10.1002/aic.15684CrossRefGoogle Scholar
Schneiderbauer, S. 2018 Validation study on spatially averaged two‐fluid model for gas–solid flows: I. A priori analysis of wall bounded flows. AIChE J. 64 (5), 15911605.10.1002/aic.16142CrossRefGoogle Scholar
Shir, C.C. 1973 A preliminary numerical study of atmospheric turbulent flows in the idealized planetary boundary layer. J. Atmos. Sci. 30 (7), 13271339.10.1175/1520-0469(1973)030<1327:APNSOA>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Speziale, C.G., Sarkar, S. & Gatski, T.B. 1991 Modelling the pressure–strain correlation of turbulence: an invariant dynamical systems approach. J. Fluid Mech. 227, 245272.10.1017/S0022112091000101CrossRefGoogle Scholar
Sundaresan, S., Ozel, A. & Kolehmainen, J. 2018 Toward constitutive models for momentum, species, and energy transport in gas–particle flows. Ann. Rev. Chem. Biomol. Engng 9, 6181.10.1146/annurev-chembioeng-060817-084025CrossRefGoogle ScholarPubMed
Tang, Y., Lau, Y.M., Deen, N.G., Peters, E.A.J.F. & Kuipers, J.A.M. 2016 Direct numerical simulations and experiments of a pseudo-2D gas-fluidized bed. Chem. Engng Sci. 143, 166180.10.1016/j.ces.2015.12.026CrossRefGoogle Scholar
Tavanashad, V., Passalacqua, A., Fox, R.O. & Subramaniam, S. 2019 Effect of density ratio on velocity fluctuations in dispersed multiphase flow from simulations of finite-size particles. Acta Mechanica 230, 469484.10.1007/s00707-018-2267-3CrossRefGoogle Scholar
Tenneti, S. & Subramaniam, S. 2014 Particle-resolved direct numerical simulation for gas-solid flow model development. Annu. Rev. Fluid Mech. 46 (1), 199230.10.1146/annurev-fluid-010313-141344CrossRefGoogle Scholar
Troshko, A.A. & Hassan, Y.A. 2001 A two-equation turbulence model of turbulent bubbly flows. Intl J. Multiphase Flow 27 (11), 19652000.10.1016/S0301-9322(01)00043-XCrossRefGoogle Scholar
Tsuji, Y., Tanaka, T. & Ishida, T. 1992 Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol. 71 (3), 239250.10.1016/0032-5910(92)88030-LCrossRefGoogle Scholar
Wallin, S. & Johansson, A.V. 2000 An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows. J. Fluid Mech. 403, 89132.10.1017/S0022112099007004CrossRefGoogle Scholar
Wang, D., Jin, T., Luo, K., Tan, J. & Fan, J. 2021 Analysis of the particles-induced turbulence in confined gas-solid fluidized beds by PR-DNS. Intl J. Multiphase Flow 141, 103655.10.1016/j.ijmultiphaseflow.2021.103655CrossRefGoogle Scholar
Xia, Y., Lin, Z., Guo, Y. & Yu, Z. 2024 Modelling of filtered drag force for clustered particle-laden flows based on interface-resolved simulation data. J. Fluid Mech. 998, A57.10.1017/jfm.2024.857CrossRefGoogle Scholar
Xia, Y., Xiong, H., Yu, Z. & Zhu, C. 2020 Effects of the collision model in interface-resolved simulations of particle-laden turbulent channel flows. Phys. Fluids 32 (10), 103303.10.1063/5.0020995CrossRefGoogle Scholar
Xia, Y., Yu, Z., Lin, Z. & Guo, Y. 2022 a Improved modelling of interfacial terms in the second-moment closure for particle-laden flows based on interface-resolved simulation data. J. Fluid Mech. 952, A25.10.1017/jfm.2022.927CrossRefGoogle Scholar
Xia, Y., Yu, Z., Lin, Z. & Guo, Y. 2022 b Model of interfacial term in turbulent kinetic energy equation and computation of dissipation rate for particle-laden flows. Phys. Fluids 34 (8), 083311.10.1063/5.0105028CrossRefGoogle Scholar
Xu, Y. & Subramaniam, S. 2007 Consistent modeling of interphase turbulent kinetic energy transfer in particle-laden turbulent flows. Phys. Fluids 19 (8), 085101.10.1063/1.2756579CrossRefGoogle Scholar
Yu, Z. & Shao, X. 2007 A direct-forcing fictitious domain method for particulate flows. J. Comput. Phys. 227 (1), 292314.10.1016/j.jcp.2007.07.027CrossRefGoogle Scholar
Zhang, Y. & Reese, J.M. 2003 Gas turbulence modulation in a two-fluid model for gas–solid flows. AIChE J. 49 (12), 30483065.10.1002/aic.690491207CrossRefGoogle Scholar
Zhao, L., Chen, X. & Zhou, Q. 2021 Inhomogeneous drag models for gas-solid suspensions based on sub-grid quantities. Powder Technol. 385, 170184.10.1016/j.powtec.2021.02.059CrossRefGoogle Scholar
Zhu, L.-T., Ouyang, B., Lei, H. & Luo, Z.-H. 2021 Conventional and data‐driven modeling of filtered drag, heat transfer, and reaction rate in gas–particle flows. AIChE J. 67 (8), e17299.10.1002/aic.17299CrossRefGoogle Scholar