Hostname: page-component-5d59c44645-7l5rh Total loading time: 0 Render date: 2024-02-25T00:31:43.262Z Has data issue: false hasContentIssue false

Movement of magnetic bacteria in time-varying magnetic fields

Published online by Cambridge University Press:  26 April 2006

Bernhard Steinberger
Institut für Geophysik, Ludwig-Maximilians-Universität München, Theresienstr. 41, D-80333 Munich, Germany Present address: Department of Earth and Planetary Sciences, Hoffman Laboratory, Harvard University, 20 Oxford Street, Cambridge MA 02138, USA.
Nikolai Petersen
Institut für Geophysik, Ludwig-Maximilians-Universität München, Theresienstr. 41, D-80333 Munich, Germany
Harald Petermann
Fachbereich Geowissenschaften, Universität Bremen, D-28334 Bremen, Germany
Dieter G. Weiss
Tierphysiologie, Universität Rostock, Universitätsplatz 2, D-18051 Rostock, Germany


The magnetic moment of individual living magnetic bacteria was determined by motion analysis in a time-dependent magnetic field. For this purpose we had to estimate the drag exerted on the moving bacterium by the surrounding liquid. First, the bacterium was approximated by an ellipsoid. In order to determine drag coefficients for more complicated (and realistic) forms, a model experiment was built. In this experiment enlarged models of bacteria were rotated in a viscous liquid and the torque acting upon them was measured. Computing algorithms were developed in order to calculate drag coefficients of magnetic bacteria and to simulate their motion in magnetic fields. The experimental and numerical determination of the drag coefficients agree within their error bounds. Besides the determination by motion analysis, the bacterial magnetic moment was also calculated from the number and size of magnetic particles contained in the bacterium as seen in an electron microscope. The results of both calculations agree well.

Research Article
© 1994 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Balkwill, D. L., Maratea, D. & Blakemore, R. P. 1980 Ultrastructure of a magnetotactic spirillum. J. Bact. 141, 13991408.Google Scholar
Batchelor, G. K. 1970 Slender body theory for particles of arbitrary cross-section in Stokes flows. J. Fluid Mech. 44, 419440.Google Scholar
Blakemore, R. P. 1975 Magnetotactic bacteria. Science 190, 377389.Google Scholar
Blakemore, R. P. 1982 Magnetotactic bacteria. Ann. Rev. Microbiol. 36, 217238.Google Scholar
Blakemore, R. P., Frankel, R. B. & Kalmijn, A. J. 1980 South-seeking magnetotactic bacteria in the southern hemisphere. Nature 286, 384385.Google Scholar
Block, S. M., Fahrner, K. A. & Berg, H. C. 1991 Visualization of bacterial flagella by videoenhanced light microscopy. J. Bact. 173, 933936.Google Scholar
Cox, R. G. 1970 The motion of long slender bodies in a viscous fluid. Part 1. General theory. J. Fluid Mech. 44, 791810.Google Scholar
Cox, R. G. 1971 The motion of long slender bodies in a viscous fluid. Part 2. Shear flow. J. Fluid Mech. 45, 625657.Google Scholar
DeLong, E. F., Frankel, R. B. & Bazylinski, D. A. 1993 Multiple evolutionary origins of magnetotaxis in bacteria. Science 259, 803806.Google Scholar
Edwardes, D. 1892 Steady motion of a viscous liquid in which an ellipsoid is constrained to rotate about a principal axis. Q. J. Maths 26, 7078.Google Scholar
Farina, M., Lins de Barros, H. G. P. & Esquivel, D. M. S. 1988 On the diversity of magnetotactic microorganisms found in natural waters from Brazil. Inst. Phys. Conf. Ser. 93: vol. 3, pp. 301302
Frankel, R. B., Blakemore, R. P., Torres de Araujo, F. F., Esquivel, D. M. S. & Danon, J. 1981 Magnetotactic bacteria at the geomagnetic equator. Science 212, 12691270.Google Scholar
Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics. Prentice-Hall.
Higdon, J. J. L. 1979 A hydrodynamic analysis of flagellar propulsion. J. Fluid Mech. 90, 685711.Google Scholar
Jarosch, R. 1967 Studien zur Bewegungsmechanik der Bakterien und Spirochäten des Hochmoores. Österr. Botanische Z. 114, 256306.Google Scholar
Jeffery, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 161179.Google Scholar
Keller, J. B. & Rubinow, S. I. 1976 Slender-body theory for slow viscous flow. J. Fluid Mech. 75, 705714.Google Scholar
Kirschvink, J. L. 1980 South-seeking magnetic bacteria. J. Exp. Biol. 86, 345347.Google Scholar
Macnab, R. & Ornston, M. K. 1977 Normal-to-curly flagellar transitions and their role in bacterial tumbling. J. Mol. Biol. 112, 130.Google Scholar
Moench, T. T. & Konetzka, W. A. 1978 A novel method for the isolation and study of a magnetotactic bacterium. Arch. Microbiol. 119, 203212.Google Scholar
Oberbeck, A. 1876 Ueber stationäre Flüssigkeitsbewegungen mit Berücksichtigung der innernen Reibung. Crelle 81, 6280.Google Scholar
Oberhack, M. & Süssmuth, R. 1987 Magnetotactic bacteria from freshwater. Z. Natur-forsch. 42c, 300306.Google Scholar
Petermann, H., Weiss, D. G., Bachmann, L. & Petersen, N. 1990 Motile behaviour and determination of the magnetic moment of magnetic bacteria in rotating magnetic fields. In Lecture Notes in Biomathematics, vol. 89 (Biological Motion) (ed. W. Alt & G. Hoffmann), pp. 387395. Springer.
Petersen, N., Weiss, D. G. & Vali, H. 1989 Magnetic bacteria in lake sediments. In Geomagnetism and Paleomagnetism (ed. F. Lowes, D. W. Collinson, J. H. Parry et al.), pp. 231241. Kluwer.
Purcell, E. M. 1977 Life at low Reynolds number. Am. J. Phys. 45, 311.Google Scholar
Sparks, N. H. C., Courtaux, L., Mann, S. & Board, R. G. 1986 Magnetotactic bacteria are widely distributed in sediments in the U.K. FEMS Microbiol. Lett. 37, 305308.Google Scholar
Spormann, A. M. & Wolfe, R. S. 1984 Chemotactic, magnetotactic and tactile behaviour in a magnetic spirillum. FEMS Microbiol. Lett. 22, 171177.Google Scholar
Spring, S., Amann, R., Ludwig, W., Schleifer, K.-H. & Petersen, N. 1992 Phylogenetic diversity and identification of non-culturable magnetotactic bacteria. Syst. Appl. Microbiol. 15, 116122.Google Scholar
Tillet, J. P. K. 1970 Axial and transverse Stokes flow past slender axisymmetric bodies. J. Fluid Mech. 44, 401417.Google Scholar
Towe, K. M. & Moench, T. T. 1981 Electron-optical characterization of bacterial magnetite. Earth Planet. Sci. Lett. 52, 213220.Google Scholar
Weiss, D. G., Maile, W. & Wick, R. A. 1989 Video microscopy. In Light Microscopy in Biology (ed. A. J. Lacey), pp. 164 IRL Press-Practical Approach Series, IRL Press Oxford.
Wu, T. Y. T., Brokaw, C. J. & Brennen, C. (ed.) 1975 Swimming and Flying in Nature, vol. 1. Plenum.
Yang, S.-M. & Leal, L. G. 1983 Particle motion in Stokes flow near a plane fluid-fluid interface. Part 1. Slender body in a quiescent fluid. J. Fluid Mech. 136, 393421.Google Scholar