Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-ssw5r Total loading time: 0.493 Render date: 2022-08-18T18:00:15.893Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Near-critical reflection of internal waves

Published online by Cambridge University Press:  10 July 1999

THIERRY DAUXOIS
Affiliation:
Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093–0230, USA
W. R. YOUNG
Affiliation:
Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093–0230, USA

Abstract

Using a matched asymptotic expansion we analyse the two-dimensional, near-critical reflection of a weakly nonlinear internal gravity wave from a sloping boundary in a uniformly stratified fluid. Taking a distinguished limit in which the amplitude of the incident wave, the dissipation, and the departure from criticality are all small, we obtain a reduced description of the dynamics. This simplification shows how either dissipation or transience heals the singularity which is presented by the solution of Phillips (1966) in the precisely critical case. In the inviscid critical case, an explicit solution of the initial value problem shows that the buoyancy perturbation and the alongslope velocity both grow linearly with time, while the scale of the reflected disturbance is reduced as 1/t. During the course of this scale reduction, the stratification is ‘overturned’ and the Miles–Howard condition for stratified shear flow stability is violated. However, for all slope angles, the ‘overturning’ occurs before the Miles–Howard stability condition is violated and so we argue that the first instability is convective.

Solutions of the simplified dynamics resemble certain experimental visualizations of the reflection process. In particular, the buoyancy field computed from the analytic solution is in good agreement with visualizations reported by Thorpe & Haines (1987).

One curious aspect of the weakly nonlinear theory is that the final reduced description is a linear equation (at the solvability order in the expansion all of the apparently resonant nonlinear contributions cancel amongst themselves). However, the reconstructed fields do contain nonlinearly driven second harmonics which are responsible for an important symmetry breaking in which alternate vortices differ in strength and size from their immediate neighbours.

Type
Research Article
Copyright
© 1999 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
69
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Near-critical reflection of internal waves
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Near-critical reflection of internal waves
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Near-critical reflection of internal waves
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *