Hostname: page-component-6bb9c88b65-t28k2 Total loading time: 0 Render date: 2025-07-21T16:29:25.024Z Has data issue: false hasContentIssue false

Near-inertial wave propagation in a curved front

Published online by Cambridge University Press:  17 July 2025

Ramana Patibandla
Affiliation:
University of Massachusetts Dartmouth, Old Westport Rd, North Dartmouth, MA, USA
Christian E. Buckingham
Affiliation:
National Oceanography Center, European Way, Southampton SO14 3ZH, UK
Amit Tandon*
Affiliation:
University of Massachusetts Dartmouth, Old Westport Rd, North Dartmouth, MA, USA
*
Corresponding author: Amit Tandon, atandon@umassd.edu

Abstract

In this work, we study the effect of flow curvature, or angular momentum, on the propagation and trapping characteristics of near-inertial waves (NIWs) in a curved front. The curved front is idealised as a baroclinic vortex in cyclogeostrophic balance. Motivated by ocean observations, we employ a Gaussian base flow, which by construction possesses a shield of oppositely signed vorticity surrounding its core, and we consider both cyclonic and anticyclonic representations of this flow. Following two main assumptions, i.e. that (i) the horizontal wavelength of the NIW is smaller than the length scale of the background flow (the WKBJ approximation), and (ii) the vertical wavelength of the NIW is smaller than the radial distance of interest, we derive the NIW dispersion relation and discuss the group velocity and direction of energy propagation. We show that the curvature can (i) increase the critical depth and horizontal extent of the trapping region, (ii) reduce NIW activity at the centre of the anticyclonic vortex core and enhance it in the cyclonic shield surrounding the core for high curvatures, (iii) lead to NIW trapping in the anticyclonic shield surrounding the cyclonic core, and (iv) increase the available band of NIW frequencies that are trapped. The solutions from the ray-tracing method are supported by numerical solutions of the governing equations linearised about the cyclogeostrophic base state. Finally, these methods are applied to an idealised model of oceanic mesoscale Arctic eddies showing an increase in the critical depth of trapping. Our results – while applied to polar eddies – equally apply at lower latitudes in both oceans and atmospheres, highlighting the potential importance of flow curvature in controlling the propagation of NIW energy.

Information

Type
JFM Rapids
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alford, M.H., MacKinnon, J.A., Simmons, H.L. & Nash, J.D. 2016 Near-inertial internal gravity waves in the ocean. Annu. Rev. Mar. Sci. 8 (1), 95123.10.1146/annurev-marine-010814-015746CrossRefGoogle ScholarPubMed
Asselin, O. & Young, W.R. 2019 An improved model of near-inertial wave dynamics. J. Fluid Mech. 876, 428448.10.1017/jfm.2019.557CrossRefGoogle Scholar
Asselin, O. & Young, W.R. 2020 Penetration of wind-generated near-inertial waves into a turbulent ocean. J. Phys. Oceanogr. 50 (6), 16991716.10.1175/JPO-D-19-0319.1CrossRefGoogle Scholar
Bender, C.M. & Orszag, S.A. 2013 Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory. Springer Science & Business Media.Google Scholar
Brannigan, L., Marshall, D.P., Garabato, A.C.N., Nurser, A.J.G. & Kaiser, J. 2017 Submesoscale instabilities in mesoscale eddies. J. Phys. Oceanogr. 47 (12), 30613085.10.1175/JPO-D-16-0178.1CrossRefGoogle Scholar
Buckingham, C.E., Gula, J. & Carton, X. 2021 a The role of curvature in modifying frontal instabilities. Part I: Review of theory and presentation of a nondimensional instability criterion. J. Phys. Oceanogr. 51 (2), 299315.10.1175/JPO-D-19-0265.1CrossRefGoogle Scholar
Buckingham, C.E., Gula, J. & Carton, X. 2021 b The role of curvature in modifying frontal instabilities. Part II: Application of the criterion to curved density fronts at low Richardson numbers. J. Phys. Oceanogr. 51 (2), 317341.10.1175/JPO-D-20-0258.1CrossRefGoogle Scholar
Carton, X. & McWilliams, J.C. 1989 Barotropic and baroclinic instabilities of axisymmetric vortices in a quasigeostrophic model. In Mesoscale/Synoptic Coherent Structures in Geophysical Turbulence (ed. J.C.J. Nihoul & B.M. Jamart), vol. 50, pp. 225244. Elsevier.10.1016/S0422-9894(08)70188-0CrossRefGoogle Scholar
Conn, S., Callies, J. & Lawrence, A. 2025 Regimes of near-inertial wave dynamics. J. Fluid Mech. 1002, A22.10.1017/jfm.2024.1175CrossRefGoogle Scholar
Elipot, S., Lumpkin, R. & Prieto, G. 2010 Modification of inertial oscillations by the mesoscale eddy field. J. Geophys. Res. Oceans 115 (C9), C09010.10.1029/2009JC005679CrossRefGoogle Scholar
Essink, S., Kunze, E., Lien, R.C., Inoue, R. & Ito, S. 2022 Near-inertial wave interactions and turbulence production in a Kuroshio anticyclonic eddy. J. Phys. Oceanogr. 52 (11), 26872704.10.1175/JPO-D-21-0278.1CrossRefGoogle Scholar
Fer, I., Bosse, A., Ferron, B. & Bouruet-Aubertot, P. 2018 The dissipation of kinetic energy in the Lofoten Basin Eddy. J. Phys. Oceanogr. 48 (6), 12991316.10.1175/JPO-D-17-0244.1CrossRefGoogle Scholar
Gertz, A. & Straub, D.N. 2009 Near-inertial oscillations and the damping of midlatitude gyres: a modeling study. J. Phys. Oceanogr. 39 (9), 23382350.10.1175/2009JPO4058.1CrossRefGoogle Scholar
Gill, A.E. 1984 On the behavior of internal waves in the wakes of storms. J. Phys. Oceanogr. 14 (7), 11291151.10.1175/1520-0485(1984)014<1129:OTBOIW>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Joyce, T.M., Toole, J.M., Klein, P. & Thomas, L.N. 2013 A near-inertial mode observed within a Gulf Stream warm-core ring. J. Geophys. Res.: Oceans 118 (4), 17971806.10.1002/jgrc.20141CrossRefGoogle Scholar
Kafiabad, H.A., Vanneste, J. & Young, W.R. 2021 Interaction of near-inertial waves with an anticyclonic vortex. J. Phys. Oceanogr. 51 (6), 20352048.Google Scholar
Kawaguchi, Y., Yabe, I., Senjyu, T. & Sakai, A. 2023 Amplification of typhoon-generated near-inertial internal waves observed near the Tsushima oceanic front in the Sea of Japan. Sci. Rep. 13 (1), 8387.10.1038/s41598-023-33813-9CrossRefGoogle ScholarPubMed
Klein, P. & Smith, S.L. 2001 Horizontal dispersion of near-inertial oscillations in a turbulent mesoscale eddy field. J. Marine Res. 59 (5).10.1357/002224001762674908CrossRefGoogle Scholar
Klein, P. & Treguier, A.M. 1994 Dispersion of wind-induced internal waves by a barotropic jet. J. Marine Res. 53 (1).Google Scholar
Kunze, E. 1985 Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr. 15 (5), 544565.10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Kunze, E., Schmitt, R.W. & Toole, J.M. 1995 The energy balance in a warm-core ring’s near-inertial critical layer. J. Phys. Oceanogr. 25 (5), 942957.10.1175/1520-0485(1995)025<0942:TEBIAW>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Lee, D. & Niiler, P.P. 1998 The inertial chimney: the near-inertial energy drainage from the ocean surface to the deep layer. J. Geophys. Res.: Oceans 103 (C4), 75797591.10.1029/97JC03200CrossRefGoogle Scholar
Lelong, M.-P., Cuypers, Y. & Bouruet-Aubertot, P. 2020 Near-inertial energy propagation inside a Mediterranean anticyclonic eddy. J. Phys. Oceanogr. 50 (8), 22712288.10.1175/JPO-D-19-0211.1CrossRefGoogle Scholar
Lighthill, J. 2001 Waves in Fluids. Cambridge University Press.Google Scholar
Llewellyn Smith, S.G. 1999 Near-inertial oscillations of a barotropic vortex: trapped modes and time evolution. J. Phys. Oceanogr. 29 (4), 747761.10.1175/1520-0485(1999)029<0747:NIOOAB>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Mahdinia, M., Hassanzadeh, P., Marcus, P.S. & Jiang, C.H. 2017 Stability of three-dimensional Gaussian vortices in an unbounded, rotating, vertically stratified, Boussinesq flow: linear analysis. J. Fluid Mech. 824, 97134.10.1017/jfm.2017.303CrossRefGoogle Scholar
Munk, W. & Wunsch, C. 1998 Abyssal recipes II: Energetics of tidal and wind mixing. Deep Sea Res. I: Oceanogr. Res. Papers 45 (12), 19772010.10.1016/S0967-0637(98)00070-3CrossRefGoogle Scholar
Niranjan Kumar, K., Rao, C.K., Sandeep, A. & Rao, T.N. 2014 SODAR observations of inertia-gravity waves in the atmospheric boundary layer during the passage of tropical cyclone. Atmos. Sci. Lett. 15 (2), 120126.10.1002/asl2.478CrossRefGoogle Scholar
Perkins, H. 1976 Observed effect of an eddy on inertial oscillations. In Deep Sea Research and Oceanographic Abstracts, vol. 23, pp. 10371042. Elsevier.Google Scholar
Qu, L. 2019 Submesoscale vortices and near-inertial waves in coastal buoyancy-driven flow . PhD thesis, Texas A&M University.Google Scholar
Serafimovich, A., Hoffmann, P., Peters, D. & Lehmann, V. 2005 Investigation of inertia-gravity waves in the upper troposphere/lower stratosphere over northern Germany observed with collocated VHF/UHF radars. Atmos. Chem. Phys. 5 (2), 295310.10.5194/acp-5-295-2005CrossRefGoogle Scholar
Shakespeare, C.J. 2016 Curved density fronts: cyclogeostrophic adjustment and frontogenesis. J. Phys. Oceanogr. 46 (10), 31933207.10.1175/JPO-D-16-0137.1CrossRefGoogle Scholar
Snyder, C., Muraki, D.J., Plougonven, R. & Zhang, F. 2007 Inertia–gravity waves generated within a dipole vortex. J. Atmos. Sci. 64 (12), 44174431.10.1175/2007JAS2351.1CrossRefGoogle Scholar
Solberg, M. 1936 Le mouvement d’inertie de l’atmosphere stable et son role dans le theorie des cyclones. Sixth Assembly, Paul Dupont, Edinburgh, Union Geodesique et Geophysique Internationale, pp. 6682.Google Scholar
Son, E.Y., Kawaguchi, Y., Cole, S.T., Toole, J.M. & Ha, H.K. 2022 Assessment of turbulent mixing associated with eddy–wave coupling based on autonomous observations from the Arctic Canada Basin. J. Geophys. Res.: Oceans 127 (9), e2022JC018489.10.1029/2022JC018489CrossRefGoogle Scholar
Taylor, S. & Straub, D. 2020 Effects of adding forced near-inertial motion to a wind-driven channel flow. J. Phys. Oceanogr. 50 (10), 29832996.10.1175/JPO-D-19-0299.1CrossRefGoogle Scholar
Thomas, J. & Arun, S. 2020 Near-inertial waves and geostrophic turbulence. Phys. Rev. Fluids 5 (1), 014801.10.1103/PhysRevFluids.5.014801CrossRefGoogle Scholar
Thomas, J. & Daniel, D. 2021 Forward flux and enhanced dissipation of geostrophic balanced energy. J. Fluid Mech. 911, A60.10.1017/jfm.2020.1026CrossRefGoogle Scholar
Thomas, J., Smith, K.S. & Bühler, O. 2017 Near-inertial wave dispersion by geostrophic flows. J. Fluid Mech. 817, 406438.10.1017/jfm.2017.124CrossRefGoogle Scholar
Voet, G. 2024 Near-inertial energy variability. Oceanography 37 (4), 3447.Google Scholar
Wang, S., Zhang, F. & Snyder, C. 2009 Generation and propagation of inertia–gravity waves from vortex dipoles and jets. J. Atmos. Sci. 66 (5), 12941314.10.1175/2008JAS2830.1CrossRefGoogle Scholar
Weijer, W., Barthel, A., Veneziani, M. & Steiner, H. 2020 The Zapiola Anticyclone: a Lagrangian study of its kinematics in an eddy-permitting ocean model. Deep Sea Res. I: Oceanogr. Res. Papers 164, 103308.10.1016/j.dsr.2020.103308CrossRefGoogle Scholar
Whitt, D.B. & Thomas, L.N. 2013 Near-inertial waves in strongly baroclinic currents. J. Phys. Oceanogr. 43 (4), 706725.10.1175/JPO-D-12-0132.1CrossRefGoogle Scholar
Whitt, D.B. & Thomas, L.N. 2015 Resonant generation and energetics of wind-forced near-inertial motions in a geostrophic flow. J. Phys. Oceanogr. 45 (1), 181208.10.1175/JPO-D-14-0168.1CrossRefGoogle Scholar
Wunsch, C. & Ferrari, R. 2004 Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech. 36 (1), 281314.10.1146/annurev.fluid.36.050802.122121CrossRefGoogle Scholar
Xu, X., Zhao, W., Huang, X., Hu, Q., Guan, S., Zhou, C. & Tian, J. 2022 Observed near-inertial waves trapped in a propagating anticyclonic eddy. J. Phys. Oceanogr. 52 (9), 20292047.10.1175/JPO-D-21-0231.1CrossRefGoogle Scholar
Young, W.R. & Ben Jelloul, M. 1997 Propagation of near-inertial oscillations through a geostrophic flow. J. Mar. Res. 55 (4), 735766.10.1357/0022240973224283CrossRefGoogle Scholar
Zodiatis, G., Drakopoulos, P., Brenner, S. & Groom, S. 2005 Variability of the Cyprus warm core eddy during the CYCLOPS project. Deep Sea Res. II: Topical Studies Oceanogr. 52 (22–23), 28972910.10.1016/j.dsr2.2005.08.020CrossRefGoogle Scholar
Supplementary material: File

Patibandla et al. supplementary material

Patibandla et al. supplementary material
Download Patibandla et al. supplementary material(File)
File 558.5 KB