Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-14T04:24:24.689Z Has data issue: false hasContentIssue false

A new wall function method for hypersonic laminar boundary layers

Published online by Cambridge University Press:  16 February 2024

Fan Mo
Affiliation:
National Laboratory for Computational Fluid Dynamics, School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, PR China
Zhenxun Gao*
Affiliation:
National Laboratory for Computational Fluid Dynamics, School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, PR China
*
Email address for correspondence: gaozhenxun@buaa.edu.cn

Abstract

A new wall function method for hypersonic laminar boundary layers (HLBLs) is proposed to reduce the near-wall grid dependence of skin friction $c_f$ and wall heat flux $q_w$ in numerical simulations, aiming for fast and accurate predictions. First, an analytic laminar velocity law of the wall is derived, which achieves a universal scaling of the near-wall velocity of HLBLs. Then an accurate temperature–velocity relation is deduced by introducing the general recovery factor to address the invalidation of the Walz relation under the cold wall effect. Based on the laminar laws of the wall, a new wall function method for HLBLs is proposed. To avoid introducing the boundary layer edge quantities, the laminar laws of the wall are reformed by modifying the outer boundary conditions of the differential equation in deriving the temperature–velocity relation. Unlike the wall function method in turbulence, the new wall function obtains directly the accurate $c_f$ and $q_w$ by post-processing without being involved in the simulation iteration. The numerical experiments of a Mach 8 HLBL over the flat plate show that effectively, the new wall function can enlarge the distance of the first grid point off the wall $\Delta y_1$ from $10^{-6}$ m to $10^{-3}$ m, which brings a 50 times enhancement of the simulation efficiency. Meanwhile, the simulation errors of $c_f$ and $q_w$ of the mesh with $\Delta y_1=10^{-3}$ m are reduced significantly from 24.2 % and 18.5 % to 0.5 % and 0.1 %, respectively. Due to the new wall function removing the boundary layer edge quantities, success is also achieved under the curved walls.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. 2006 Hypersonic and High Temperature Gas Dynamics, 2nd edn. McGraw-Hill.CrossRefGoogle Scholar
Bai, T., Griffin, K. & Fu, L. 2022 Compressible velocity transformations for various noncanonical wall-bounded turbulent flows. AIAA J. 60 (7), 43254337.CrossRefGoogle Scholar
Duan, L., Beekman, I. & Martín, M. 2010 Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature. J. Fluid Mech. 655, 419445.CrossRefGoogle Scholar
Duan, L. & Martín, M. 2011 Direct numerical simulation of hypersonic turbulent boundary layers. Part 4. Effect of high enthalpy. J. Fluid Mech. 684, 2559.CrossRefGoogle Scholar
Gao, Z., Jiang, C. & Lee, C. 2013 Improvement and application of wall function boundary condition for high-speed compressible flows. Sci. China 56, 2501–2515.Google Scholar
Gatski, T. & Bonnet, J. 2009 Compressibility, Turbulence and High Speed Flow. Elsevier.Google Scholar
Griffin, K., Fu, L. & Moin, P. 2021 Velocity transformation for compressible wall-bounded turbulent flows with and without heat transfer. Proc. Natl Acad. Sci. USA 118 (34).CrossRefGoogle ScholarPubMed
Griffin, K., Fu, L. & Moin, P. 2023 Near-wall model for compressible turbulent boundary layers based on an inverse velocity transformation. J. Fluid Mech. 970, A36.CrossRefGoogle Scholar
Hoffmann, K., Siddiqui, M. & Chiang, S. 2013 Difficulties associated with the heat flux computations of high speed flows by the Navier–Stokes equations. In Aerospace Sciences Meeting. AIAA.Google Scholar
Mo, F., Li, Q., Zhang, L. & Gao, Z. 2023 Direct numerical simulation of hypersonic wall-bounded turbulent flows: an improved inflow boundary condition and applications. Phys. Fluids 35, 035135.Google Scholar
Mo, F., Su, W., Gao, Z., Du, C., Jiang, C. & Lee, C. 2022 Numerical investigations of the slot blowing technique on the hypersonic vehicle for drag reduction. Aerosp. Sci. Technol. 121, 107372.CrossRefGoogle Scholar
Nichols, R. & Nelson, C. 2004 Wall function boundary conditions including heat transfer and compressibility. AIAA J. 42 (6), 11071114.CrossRefGoogle Scholar
Thivet, F., Besbes, O. & Knight, D. 2013 Effect of grid resolution on accuracy of skin friction and heat transfer in turbulent boundary layers. In Aerospace Sciences Meeting and Exhibit. AIAA.Google Scholar
Van Driest, E.R. 2003 Turbulent boundary layer in compressible fluids. J. Spacecr. Rockets 40 (6), 10121028.CrossRefGoogle Scholar
Walz, A. 1969 Boundary Layers of Flow and Temperature. MIT.Google Scholar
White, F. 1991 Viscous Fluid Flow. Osborne McGraw-Hill.Google Scholar
Wilcox, D. 2006 Turbulence Modeling for CFD. DCW Industries.Google Scholar
Zhang, Y., Bi, W., Hussain, F. & She, Z. 2014 A generalized Reynolds analogy for compressible wall-bounded turbulent flows. J. Fluid Mech. 739, 392420.CrossRefGoogle Scholar